
An Iterative Eigensolver for Rank-Constrained
Semidefinite Programming

Rajat Sanyal Aditya V. Singh Kunal N. Chaudhury

Department of Electrical Engineering, Indian Institute of Science, Bangalore, India

Email: sanyalrajat91@gmail.com {adityavs, kunal}@iisc.ac.in

Abstract—Rank-constrained semidefinite programming (SDP)
arises naturally in various applications such as max-cut, angular
(phase) synchronization, and rigid registration. Based on the
alternating direction method of multipliers, we develop an
iterative solver for this nonconvex form of SDP, where the
dominant cost per iteration is the partial eigendecomposition
of a symmetric matrix. We prove that if the iterates converge,
then they do so to a KKT point of the SDP. In the context of
rigid registration, we perform several numerical experiments to
study the convergence behavior of the solver and its registration
accuracy. As an application, we use the solver for wireless sensor
network localization from range measurements. The resulting
algorithm is shown to be competitive with existing optimization
methods for sensor localization in terms of speed and accuracy.

Index Terms—semidefinite programming, ADMM, eigensolver,
convergence, registration, sensor network localization.

I. INTRODUCTION

We consider a class of rank-constrained semidefinite pro-

grams that arise in applications such as finding the largest cut in

a graph [1], determining angles from their differences [2], and

the registration of point clouds using rigid transforms [3]. We

will focus on the registration problem, where we have N points

in R
d, which are divided into M overlapping point clouds. The

local coordinates (and the label) of points in each point cloud

are known. The task is to compute the global coordinates of

all the N points [3]. We will refer to this as rigid registration,

which has found applications in sensor network localization [4].

The maximum likelihood estimator for this problem involves

optimization over rigid transforms (translations, rotations and

reflections) [3]. In particular, the maximum likelihood estimate

for this problem is given by the solution of

min
O1,...,OM∈O(d)

M∑

i,j=1

Tr
(
[C]ijO

⊤
j Oi

)
. (1)

where O(d) is the set of d×d orthogonal matrices, and [C]ij ∈
R

d×d denotes the (i, j)-th block of a certain C ∈ R
Md×Md. We

refer the reader to [3] for details. Interestingly, (1) can be seen

as a non-commutative analogue of the Boolean optimization

min
xi,...,xM∈{−1,1}

M∑

i,j=1

cijxjxi,

which comes up in max-cut [1]. From the point of view of

continuous optimization, the main challenge with (1) is that

O(d) is not a connected manifold (apart from being nonconvex).

In the context of local optimization, this means that we cannot

hope to compute the maximum likelihood estimate unless we

initialize the iterations on the correct component of the domain.

Since the domain in (1) has 2M components, getting the right

initialization is difficult. It was observed in [3] that if we work

with the Gram matrix of O1, . . . ,OM , then we can express

(1) as a standard semidefinite program (SDP), albeit with an

additional rank-constraint. The authors proposed to relax the

rank constraint to obtain a standard SDP, whose solution can be

computed to arbitrary precision using an interior point solver.

Later, an efficient and scalable SDP solver was proposed in

[4]. Though these methods can find the global minimum of

the relaxed problem, there is no guarantee that the rank of

the solution is exactly d (we would have solved (1) in this

case); if the rank is greater than d, then the solution becomes

infeasible for (1). This necessitates “rounding” of the solution

of the convex relation to obtain a feasible solution for (1),

which will generally be suboptimal. Our idea is to build an

efficient solver that can directly tackle (1). In this regard, our

contributions are as follows:

• Based on the alternating direction method of multipliers

(ADMM) [5], we develop an iterative solver for (1) that involves

simple updates. In particular, one of the updates is trivial, while

the other is a partial eigendecomposition of a symmetric matrix.

• We show that any fixed point of our solver is a KKT point

of (1). This result is novel because, as will be made explicit, a

crucial assumption behind the existing analyses on nonconvex

ADMM [6] [7], [8] does not hold in our case.

• We present numerical results for rigid registration and sen-

sor network localization, which demonstrate the effectiveness

of the solver in terms of accuracy and timing.

We note that ADMM based algorithms have become popular

for structured convex programming [5]. Lately, the ADMM

framework has been successfully applied to various nonconvex

problems, even though rigorous convergence guarantees are

not available. In fact, while the analysis for convex ADMM is

well established, nonconvex ADMM is still a developing area

of research. Some results have been reported in [6]–[8], but

the analysis in these works relies on regularity assumptions

on the objective that are not met for our ADMM formulation.

More precisely, both updates of our ADMM solver involves

constrained optimization, while at least one update in [6]–[8]

is assumed to be a smooth unconstrained optimization.

978-1-5386-9286-8/19/$31.00 © 2019 IEEE

The rest of the paper is as follows. In Section II, we formulate

the optimization problem, based on which we develop the

solver in Section III. The fixed point analysis is undertaken in

Section IV. Numerical results are reported in Section V, and

we conclude with a summary of the results in Section VI.

II. PROBLEM FORMULATION

It was observed in [3] that we can express (1) as a rank-

constrained semidefinite program (SDP). More specifically,

consider the Gram matrix G of size m × m, whose (i, j)-
th block is [G]ij = O

⊤
i Oj , where i, j ∈ [[1,M]]. Here and

henceforth, m = Md, and we use [[p, q]] to denote the integers

{p, . . . , q}. In terms of G, we can reformulate (1) as

min
G∈Sm

+

Tr(CG)

subject to [G]ii = Id, i ∈ [[1,M]], rank(G) = d,
(2)

where S
m
+ is the set of symmetric positive semidefinite matrices

of size m×m. This is a standard SDP, except for the additional

rank constraint, which in fact makes the problem nonconvex.

Following this observation, a convex relaxation (GRET-SDP)

was proposed in [3] simply by dropping the rank constraint.

However, the relaxation is not guaranteed to return a rank-d
solution, and one is required to “round” the solution if the

rank is greater than d. This can produce suboptimal solutions,

i.e., the objective value of the rounded solution can be much

larger than the optimum of (2).

As against this, we propose to directly tackle the original

problem (1). In particular, we will demonstrate that an iterative

solver can be developed for (1), where the subproblems admit

closed-form solutions that can be computed efficiently. In

particular, consider the variable

W =
1√
M

[O1 . . .OM]⊤ ∈ R
m×d.

Notice that we can write (1) as

min
W∈Rm×d

Tr(CWW
⊤)

subject to [WW
⊤]ii = M−1

Id, i ∈ [[1,M]].
(3)

As mentioned above, the authors in [3] choose to work with

the Gram matrix WW
⊤. We will however continue to work

with W. Moreover, for reasons that will be apparent in Section

III, we propose to add the redundant constraint W⊤
W = Id.

That is, we replace (3) by the equivalent problem

min
W∈Rm×d

Tr(CWW
⊤)

subject to W
⊤
W = Id,

[WW
⊤]ii = M−1

Id, i ∈ [[1,M]].

(4)

By “equivalent”, we mean that any optimal solution of (3) is

also optimum for (4), and vice versa. Importantly, notice that

unlike (2), there are no (explicit) rank constraints in (4).

III. PROPOSED SOLVER

We propose to solve (4) using variable splitting and the al-

ternating direction method of multipliers [5]. More specifically,

by introducing the variable X = WW
⊤, we first transform

(4) into the following problem:

min
W∈R

m×d, X∈S
m

Tr(CWW
⊤)

subject to [X]ii = M−1
Id, i ∈ [[1,M]],

W
⊤
W = Id, X = WW

⊤,

(5)

where S
m is the set of symmetric matrices of size m. In terms

of the sets

Θ =
{
W ∈ R

m×d : W⊤
W = Id

}
,

and

Ω =
{
X ∈ S

m : [X]ii = M−1
Id, i ∈ [[1,M]]

}
,

we can compactly write (5) as follows:

min
W∈Θ, X∈Ω

Tr(CWW
⊤)

subject to X = WW
⊤.

(6)

This is a constrained optimization problem with variables X

and W. The augmented Lagrangian for (6) is given by

Lρ(W,X,Λ) = 〈C,WW
⊤〉+ 〈Λ,X−WW

⊤〉
+

ρ

2
‖X−WW

⊤‖2, (7)

where W and X are the primal variables, and Λ ∈ S
m is

the dual variable associated with the constraint X = WW
⊤;

ρ > 0 is a penalty parameter [5]. Notice that we have used

the inner-product 〈X,Y〉 = Tr(XY) and the Frobenius norm

‖X‖ = 〈X,X〉1/2, both defined on S
m.

Starting with some initialization X,Λ ∈ S
m and ρ0 > 0,

the ADMM iterates for k = 0, 1, . . . are given by

W
k+1 = argmin

W∈Θ
Lρk

(W,Xk,Λk), (8)

X
k+1 = argmin

X∈Ω
Lρk

(Wk+1,X,Λk), (9)

Λ
k+1 = Λ

k + ρk
(
X

k+1 −W
k+1

W
k+1⊤

)
,

ρk+1 = min(γρk, ρ∞),

where γ > 1. Notice that ρk is allowed to increase at each

iteration up till ρ∞, and then it is held fixed.

It is not difficult to verify that by combining the linear and

quadratic terms, we can write (9) as

X
k+1 = argmin

X∈Ω
‖X−A

k‖2 = PΩ(A
k), (10)

where A
k=W

k+1
W

k+1⊤−ρk−1
Λ

k, and PΩ is the projection

operator. From the definition of Ω, it follows that X
k+1 is

obtained simply by replacing the diagonal blocks of Ak with

M−1
Id, keeping the other blocks unchanged.

We next compute the update in (8). After some manipulations,

we can write this as

W
k+1 = argmin

W∈Θ
〈Bk,WW

⊤〉, (11)

where B
k = C−Λ

k − ρkX
k. It is now clear that (11) is an

eigenvalue problem. Indeed, if w1, ...,wd are the columns of

W, then we can write (11) as

min
w1,...,wd

d∑

i=1

w
⊤
i B

k
wi. (12)

Moreover, since W ∈ Θ, it follows that w1, ...,wd form an

orthonormal system. Let λ1, . . . , λm be the eigenvalues of Bk

sorted in non-decreasing order, with corresponding eigenvectors

q1, . . . , qm. Then the solution of (12) is given by w
⋆
i = qi, i ∈

[[1, d]]. In other words,

W
k+1 =

[
q1 · · · qd

]
. (13)

The ADMM updates are summarized in Algorithm 1. The

dominating cost per iteration is the (partial) eigendecomposition

of Bk, and this can be performed efficiently using off-the-shelf

eigensolvers. Since the problem is nonconvex, the initialization

of X plays an important role. In this regard, we note that the

eigendecomposition of C can be used to obtain a non-trivial

initialization of X [3]. As for Λ, we simply initialize it to zero

for all the experiments.

Algorithm 1: ADMM Solver

Input: C, γ > 1, ρ∞ > 0.

Initialize: X,Λ, and ρ > 0.

while some stopping criteria is not met

B = C−Λ− ρX.

{q1, . . . , qd} : bottom d eigenvectors of B.

W = [q1 . . . qd].
X← ΠΩ(WW

⊤ − ρ−1
Λ).

Λ← Λ+ ρ(X−WW
⊤).

ρ← min(γρ, ρ∞).
end

IV. FIXED POINT ANALYSIS

Convergence analysis of ADMM for convex problems is a

well-researched topic [5]. However, a theoretical understanding

of why ADMM solvers applied to nonconvex programs succeed

so often in practice remains elusive. Lately, there have been a

handful convergence results for nonconvex ADMM [6] [7], [8].

Unfortunately, they rely on assumptions that do not hold for

our problem. More precisely, note that we can rewrite (6) as

min
W∈Rm×d, X∈Sm

Tr(CWW
⊤) + ιΘ(W) + ιΩ(X)

subject to X = WW
⊤,

(14)

where ιΓ is the indicator function associated with a feasible set

Γ, namely, ιΓ(Y) = 0 if Y ∈ Γ, and ιΓ(Y) = ∞ otherwise

[5]. Note that, because of the indicator functions, the objective

function in (14) is non-smooth in both W and X. This violates

a crucial regularity assumption common in existing analyses of

nonconvex ADMM, namely, that the objective must be smooth

in at least one variable. As a result, none of the existing results

on convergence are applicable to the proposed ADMM solver.

Nevertheless, we will show in Section V that Algorithm 1

performs well empirically and, in particular, it is found to

converge with the spectral initialization. On the theoretical

front, we have succeeded in establishing that if the iterates of

Algorithm 1 converge, then they do so to a KKT (stationary)

point (e.g., see [9, Chapter 3]).

Before formally stating our result, we write (1) as a nonlinear

program:

min
O1,··· ,OM∈Rd×d

M∑

i,j=1

Tr
(
[C]ijO

⊤
j Oi

)

subject to Id −O
⊤
i Oi = 0, i ∈ [[1,M]].

(15)

This allows us to write the Lagrangian of (15) and use KKT

theory. In particular, the Lagrangian is given by

L=
M∑

i,j=1

Tr
(
[C]ijO

⊤
j Oi

)
+

M∑

i=1

Tr(Λk

(
Id −O

⊤
i Oi)

)
, (16)

where the symmetric matrices Λi ∈ R
d×d, i ∈ [[1,M]], are

the Lagrange multipliers for the equality constraints (these

should not be confused with the multiplier in (7)). We have

the following characterization of the KKT point of (16) (see

Appendix VII-A for the proof). Recall that G is the Gram

matrix of the Oi’s, whose (i, j)-th block is [G]ij = O
⊤
i Oj .

Lemma 1. The variables O
∗
1, . . . ,O

∗
M ∈ R

d×d are a KKT

point of (15) if and only if, for i ∈ [[1,M]],

(a) [G∗]ii = Id, and

(b) [CG
∗]ii = [G∗

C]ii.

In this case, we will say that G∗ is a KKT point of (15).

We now make precise the notion of convergence that is used

in our analysis. We say that Algorithm 1 has converged if it

“stops making any progress”, i.e., the variables stop getting

updated. Stated differently, if we view the progress from one

iteration to the next as a map (from some space into itself),

then this is equivalent to the iterates converging to a fixed point

of this map. Indeed, note that if

W
k+1

W
k+1⊤ = X

k (17)

for some k = k0, then we must have for k ≥ k0:

X
k+1 = W

k+1
W

k+1⊤ and Λ
k+1 = Λ

k. (18)

Conversely, if (18) holds at iteration k = k0, (17) must hold

for k ≥ k0. In summary, the convergence of Algorithm 1 is

equivalent to the condition that (17) holds for some k = k0.

We are now in a position to state our main result (the proof is

provided in Appendix VII-B).

Theorem 2. Suppose Λ
0 = 0 and X

k = W
k+1

W
k+1⊤ at

iteration k = k0. Then G
∗ = MX

k0 is a KKT point of (15).

The practical significance of this result is that the feasibility

gap ‖Xk−Wk+1
W

k+1⊤‖ can be used to monitor the evolution

of the iterates to a fixed point. For example, we can stop the

iterations when this gap is less than a specified tolerance.

V. NUMERICAL EXPERIMENTS

We now report some numerical experiments on rigid regis-

tration to analyze performance of the proposed solver. We also

compare its performance with GRET-SDP [3], which solves a

convex relaxation of (2). Moreover, as a concrete application,

we use our algorithm for sensor network localization (SNL)

using a registration-based framework [10]. In this context,

we also compare our method with SNLSDP [11] and ESDP

[12], which are still considered state-of-the-art SNL solvers as

far as localization accuracy is concerned. SNLSDP solves the

semidefinite relaxation of the SNL using a interior point solver

[11]. Due to the poor scalability of the interior method, a further

edge-based relaxation is proposed in [12] known as ESDP. The

simulations were executed on a 3.4 GHz, quad-core machine

with 32 GB memory, using the MATLAB implementation of

Algorithm 1. For the experiments, we increase the value of ρ
for the first 100 iterations, and fix it for subsequent iterations.

A. Performance analysis for rigid registration

Experiment 1. For two point clouds, i.e., when M = 2, the

registration problem has a closed-form solution [13]. In this

case, global optimum of (1) can be computed exactly. As a

result, we can check optimality of the solution computed by the

proposed solver for two point clouds. Specifically, we consider

a point cloud with N = 500 points. We apply a random

rigid transformation on each point cloud and corrupt the local

coordinates. If the global coordinates are x1, . . . , xN ∈ R
d,

then the generated local coordinates are as follows:

xk,i = Oixk + ti + ǫk,i, ǫk,i ∼ N (0, ηId),

where xk,i is the coordinate of the k-th point in the i-th point

cloud (i = 1, 2). A typical simulation result is shown in Fig 1.

In this case, ρ0 = 1e-4 and γ = 1.1, and we ran the algorithm

for 500 iterations. We used a random initialization for our solver.

Interestingly, the iterates converged in just two iterations, for

the noiseless and noisy scenarios. The reconstructed point cloud

(after alignment) and the original point cloud are shown in Fig

1. To measure the reconstruction accuracy, we use the average

normalized error (ANE) [14]:

ANE =

{∑N
i=1‖x̂i − x̄i‖2∑N
i=1‖x̄i − x̄c‖2

}1/2

,

where (x̂i) are the coordinates of the reconstructed point cloud

(after alignment), (x̄i) are the original coordinates (ground

truth), and x̄c = (x̄1 + · · ·+ x̄N)/N is the centroid. We notice

that the proposed method can solve the registration problem

exactly for any random initialization when η = 0.

Experiment 2. We now study how the proposed algorithm

behaves for different values of ρ0. We consider the setup in

Experiment 1, but we use M = 10 point clouds. The evolution

of the objective function with iterations is shown in Fig 2,

for noise level η = 0.01. Notice that the objective converges

within few iterations, though it converges to different values

depending on ρ0. In particular, the ANEs are identical (= 0.7)

for ρ0 = 1e-4, 1e-3, and 1e-2; however, ANE = 17.3 when

-0.4 -0.3 -0.2 -0.1 0 0.1 0.2 0.3 0.4

-0.4

-0.3

-0.2

-0.1

0

0.1

0.2

0.3

0.4

(a) η = 0,ANE = 1.2e-12.

-0.4 -0.3 -0.2 -0.1 0 0.1 0.2 0.3 0.4 0.5

-0.4

-0.3

-0.2

-0.1

0

0.1

0.2

0.3

0.4

0.5

(b) η = 0.01,ANE = 5.4e-1.

Fig. 1. Registration of two point clouds with N = 500 point each, both with
and without noise in the local coordinates. The estimated and the original
coordinates are marked using ⋆ and ◦. We have used random initializations.

0 50 100 150 200 250 300 350 400 450 500

k

10
-2

10
-1

10
0

10
1

T
r(
C
W

k
W

k
⊤
)

ρ0 = 1e-4
ρ0 = 1e-3
ρ0 = 1e-2
ρ0 = 1e-1

Fig. 2. Evolution of the objective function with iterations for different ρ0.

ρ0 = 0.1 (see the plots in Fig 2). A possible explanation is

that the iterates converge to a poor local minimum in the latter

case. Based on exhaustive simulations, it appears that the ANE

is small when ρ0 is in the range [1e-4, 1e-2]. Unfortunately,

unlike when M = 2, since we cannot ascertain the global

minimum of (1) in this case, we cannot assert that the iterates

converge to the optimal solution when ρ0 ∈ [1e-4, 1e-2].
Experiment 3. We now perform an experiment using the

setup in Experiment 2, but at zero noise level. We measure

the feasibility gap ‖Xk −W
k
W

k⊤‖ at each iteration. These

are shown in Fig 3. Notice that the gap seems to vanish (up

to machine precision) after a finite number of iterations. For

completeness, the ANE is 9.3e-11 (exact reconstruction).

Experiment 4. We next compare with GRET-SDP [3] in

terms of timing and accuracy. We set N = 500,M = 100, d =
2 and η = 1e-2. For both methods, we initialize with the

spectral solution GRET-SPEC [3]. Evolution of the objective

is shown in Fig 4. Note that both methods converge to the same

objective. However, the proposed algorithm converges much

faster than the convex GRET-SDP solver. Moreover, as far as

the per-iteration cost is concerned, our method requires just the

bottom d eigenvectors (d is 2 or 3 for most practical problems),

whereas GRET-SDP requires the full eigendecomposition. A

comparison with GRET-SPEC in terms of accuracy is provided

in Fig 5. Notice that the proposed method performs better than

GRET-SPEC. Moreover, as with GRET-SPEC, the ANE for

0 1000 2000 3000 4000 5000 6000 7000 8000 9000 10000

k

10
-10

10
-9

10
-8

10
-7

10
-6

10
-5

10
-4

10
-3

10
-2

||
X

k
−

W
k
W

k
⊤
||

Fig. 3. Evolution of the feasibility gap with iterations.

0 100 200 300 400 500 600 700 800 900 1000

k

0.04

0.06

0.08

0.1

0.12

0.14

0.16

0.18

0.2

0.22

o
b
je
ct
iv
e
fu
n
ct
io
n

Non-convex ADMM

Convex ADMM

Fig. 4. Convergence results for N = 500,M = 100, d = 2 and η = 0.01.

our method show a linear trend with the noise level.

B. Application to sensor network localization

We now demonstrate the effectiveness of our algorithm for

range-based wireless SNL. Recall that the problem in SNL is

to determine the location of a network of sensors from inter-

sensor distances and locations of a few selected sensors (called

anchors) [11], [12]. More specifically, the distance between

two sensors is assumed to be known if they are within the

radio range (denoted by r) of each other. It was shown in

[10] that the localization problem can be solved efficiently by

mapping it into a registration problem. More specifically, the

idea was to divide the wireless network into smaller overlapping

cliques (wherein all the pairwise distances are known). Each

clique is then efficiently localized (in parallel) using classical

multidimensional scaling. Finally, the cliques are registered in a

global coordinate system using rigid registration. We propose to

use Algorithm (1) in place of GRET-SDP which was originally

used in [10].
As for the network topology, we consider random geometric

graphs (RGGs) and structured datasets. To simulate a RGG,

we randomly sample points from the unit square [−0.5, 0.5]2,

and consider them as the sensors. We connect two sensors by

an edge only if their distance is less than r. For each edge,

the distance measurement is modeled as follows [11], [12]:

dij = |1 + ǫij | · ‖x̄i − x̄j‖, ǫij ∼ N (0, η),

when i and j are sensors, and as

dik = |1 + ǫik| · ‖x̄i − ak‖, ǫik ∼ N (0, η),

0 0.001 0.002 0.003 0.004 0.005 0.006 0.007 0.008 0.009 0.01

η

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

A
N
E

Non-convex ADMM

GRET-SPEC

Fig. 5. Comparisons of ANEs for various η (N = 500,M = 100, d = 2).

-4 -3 -2 -1 0 1 2 3 4 5 6

-4

-3

-2

-1

0

1

2

3

4

5

Sensors

Anchors

(a) Proposed (1.1e-12, 1 min)

-4 -3 -2 -1 0 1 2 3 4 5 6

-4

-3

-2

-1

0

1

2

3

4

5

Sensors

Anchors

(b) ESDP [12] (4.5e-2, 3min16sec)

-4 -3 -2 -1 0 1 2 3 4 5 6

-4

-3

-2

-1

0

1

2

3

4

5

Sensor

Anchor

(c) Proposed (6.6e-4, 59 sec)

-4 -3 -2 -1 0 1 2 3 4 5 6

-4

-3

-2

-1

0

1

2

3

4

5

Anchors

Sensors

(d) ESDP [12] (4.6e-2, 3min17sec)

Fig. 6. Localization results for the spiral dataset [14]. The first row corresponds
to clean measurements (η = 0), while the bottom row is for η = 0.01. In
either case, r = 0.8. The anchors are shown in ⋆ , while the localized sensors
are shown in ◦. The (ANE, timing) are also reported.

if i is a sensor and k is an anchor.

Experiment 5. A detailed comparison with SNLSDP [11]

and ESDP [12] is provided in Table I. For each noise level,

we have averaged the results over 100 realizations. For a given

N , we randomly picked 10% points and set them as anchors

[11]. The ANEs and timings are compared for various network

sizes and noise levels in Table I. The proposed solver can find

the sensor locations at machine level precision for noiseless

scenarios. Moreover, our method outperforms ESDP both in

terms of the ANE and timing. Note that although the accuracy

of SNLSDP and our method are comparable, SNLSDP cannot

be scaled to large networks.

Experiment 6. Finally, we compare the proposed algorithm

with ESDP on the spiral dataset [14]. This consists of 2259
points and its diameter (distance between two furthest points)

is 11.2. We randomly select 226 points (about 10% points) as

anchors, and set the radio range to r = 0.8. The reconstructions

are reported in Fig 6, along with the corresponding ANEs

and timings. Notice that, unlike ESDP, our method is able to

preserve the network structure.

VI. CONCLUSION

We proposed an iterative solver for rank-constrained SDP

with block diagonal constraints. The per-iteration complexity is

TABLE I
COMPARISON OF TIMING AND LOCALIZATION ACCURACY OF THE PROPOSED METHOD WITH SNLSDP [11] AND ESDP [12] FOR RANDOM GEOMETRIC

GRAPHS. WE USE A ⋆ TO MEAN THAT THE INTERIOR-POINT SOLVER COULD NOT SOLVE THE SDP IN SNLSDP FOR THAT SETTING.

Timing Accuracy (ANE)
N K r η Proposed ESDP [12] SNLSDP [11] Proposed ESDP [12] SNLSDP [11]

100 10 0.4
0 0.6sec 4.9sec 3.4sec 1.5e-14 1.8e-5 7.6e-10
0.1 0.6sec 2.4sec 5.1sec 2.4e-2 3.2e-1 2.4e-2

500 50 0.18
0 5.6sec 1.1min 5.9min 2.5e-14 6.6e-7 6.6e-7
0.1 5.7sec 18.7sec 8.3min 1e-2 2.3e-2 1e-2

1000 100 0.12
0 23.8sec 2.6min ⋆ 3.5e-11 1.4e-6 ⋆

0.01 23sec 1.2min ⋆ 7.7e-4 1.3e-3 ⋆

4000 400 0.06
0 14.9min 43.2min ⋆ 1e-13 1.8e-6 ⋆

0.01 14.8 min 17.8min ⋆ 3.9e-4 1e-3 ⋆

essentially the computation of the bottom d eigenvectors of a

symmetric matrix. We proved that if the iterates converge, then

they do so to a KKT point. Results of numerical simulations

were reported to show that the algorithm indeed converges (and

often quite rapidly) for the registration problem. Moreover, our

solver was shown to compare favorably with existing methods,

both in terms of the timing and accuracy. We also showed

how the proposed solver can be used for sensor localization by

integrating it with the registration-based framework proposed

in [10]. This was shown to yield promising results (competitive

with existing optimization methods [11], [12]) for both random

and structured networks.

VII. APPENDIX

A. Proof of Lemma 1

For a minimization problem with equality constraints, KKT

conditions amount to primal feasibility and stationarity of

Lagrangian with respect to the primal variables [9]. Primal

feasibility gives us condition (a). On the other hand, setting

the derivative of (16) with respect to Oi to zero, we obtain

OiΛi =
M∑

j=1

Oj [C]ji, i ∈ [[1,M]]. (19)

Left multiplying (19) by O
⊤
i , we have

Λi =
M∑

j=1

O
⊤
i Oj [C]ji =

M∑

j=1

[G]ij [C]ji = [GC]ii.

Also, note that Λ⊤
i = [CG]ii. Since Λi is symmetric, condition

(b) follows immediately. Conversely, it is not difficult to see

that conditions (a) and (b) together imply that G is a stationary

point of (15).

B. Proof of Theorem 2

To show that G∗ is a KKT point of (15), we use Lemma

1. Since G
∗ = MX

k0 and X
k0 ∈ Ω, it is clear that [G∗]ii =

Id, i ∈ [[1,M]]. This verifies condition (a) in Lemma 1. We

now verify condition (b): [CG
∗]ii = [G∗

C]ii, i ∈ [[1,M]].
Since G

∗ = MX
k0 and X

k0 = W
k0+1

W
k0+1⊤, it follows

from (13) that the eigenvectors of G
∗ and B

k0 are identical.

Therefore, G∗ and B
k0 must commute: B

k0G
∗ = G

∗
B

k0 .

Moreover, since B
k0 = C−Λ

k0 − ρkX
k0 , we obtain that

(C−Λ
k0)G∗ = G

∗(C−Λ
k0).

In particular, [(C−Λ
k0)G∗]ii = [G∗(C−Λ

k0)]ii. That is,

[CG
∗]ii − [Λk0G

∗]ii = [G∗
C]ii − [G∗

Λ
k0]ii.

Since the update in (10) affects only the diagonal blocks

and Λ
0 = 0 by assumption, it is easily verified that Λ

k

is block diagonal for k ≥ 0. Therefore, [Λk0G
∗]ii =

[Λk0]ii[G
∗]ii and [G∗

Λ
k0]ii = [G∗]ii[Λ

k0]ii. Now, since

[G∗]ii = Id, condition (b) follows.

REFERENCES

[1] M. X. Goemans and D. Williamson, “Improved approximation algo-
rithms for maximum cut and satisfiability problems using semidefinite
programming,” Journal of the ACM, vol. 42, pp. 1115–1145, 1995.

[2] A. Singer, “Angular synchronization by eigenvectors and semidefinite
programming,” Applied and computational harmonic analysis, vol. 30,
no. 1, pp. 20–36, 2011.

[3] K. N. Chaudhury, Y. Khoo, and A. Singer, “Global registration of
multiple point clouds using semidefinite programming,” SIAM Journal

on Optimization, vol. 25, no. 1, pp. 468–501, 2015.
[4] R. Sanyal, S. M. Ahmed, M. Jaiswal, and K. N. Chaudhury, “A scalable

ADMM algorithm for rigid registration,” IEEE Signal Processing Letters,
vol. 24, no. 10, pp. 1453–1457, 2017.

[5] S. Boyd, N. Parikh, E. Chu, B. Peleato, and J. Eckstein, “Distributed
optimization and statistical learning via the alternating direction method
of multipliers,” Foundations and Trends® in Machine Learning, vol. 3,
no. 1, pp. 1–122, 2011.

[6] C. Lu, J. Feng, Z. Lin, and S. Yan, “Nonconvex sparse spectral clustering
by alternating direction method of multipliers and its convergence
analysis,” Proc. AAAI Conference on Artificial Intelligence, 2018.

[7] Y. Wang, W. Yin, and J. Zeng, “Global convergence of ADMM in
nonconvex nonsmooth optimization,” arXiv preprint arXiv:1511.06324,
2015.

[8] M. Hong, Z.-Q. Luo, and M. Razaviyayn, “Convergence analysis of
alternating direction method of multipliers for a family of nonconvex
problems,” SIAM Journal on Optimization, vol. 26, no. 1, pp. 337–364,
2016.

[9] D. P. Bertsekas, Nonlinear Programming. Athena scientific Belmont,
1999.

[10] R. Sanyal, M. Jaiswal, and K. N. Chaudhury, “On a registration-based
approach to sensor network localization,” IEEE Trans. Signal Processing,
vol. 65, no. 20, pp. 5357–5367, 2017.

[11] P. Biswas, T.-C. Liang, K.-C. Toh, Y. Ye, and T.-C. Wang, “Semidefinite
programming approaches for sensor network localization with noisy dis-
tance measurements,” IEEE Trans. Automation Science and Enggineering,
vol. 3, no. 4, pp. 360–371, 2006.

[12] Z. Wang, S. Zheng, Y. Ye, and S. Boyd, “Further relaxations of the
semidefinite programming approach to sensor network localization,”
SIAM Journal on Optimization, vol. 19, no. 2, pp. 655–673, 2008.

[13] K. S. Arun, T. S. Huang, and S. D. Bolstein, “Least-squares fitting of two
3-D point sets,” IEEE Trans. Pattern Analysis and Machine Intelligence,
no. 5, pp. 698–700, 1987.

[14] M. Cucuringu, Y. Lipman, and A. Singer, “Sensor network localization
by eigenvector synchronization over the Euclidean group,” ACM Trans.

Sensor Networks, vol. 8, no. 3, pp. 19–42, 2012.

