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Abstract

In this thesis, we consider the rigid registration problem, which arises in applications such as
sensor network localization, multiview registration, and protein structure determination. The
abstract setup for this problem is as follows. We are given a collection of N labelled points in
d-dimensional Euclidean space. There are M observers, each of whom observes a subset of
points and assigns coordinates to them in their local frame of reference. For each observer, we
know which points they observe, and the (possibly noisy) local coordinates assigned to these
points. Based on this information, we wish to infer the global coordinates of the N points. We
investigate the following questions in this context:

1. Uniqueness: Suppose that the local coordinates are noiseless. In this case, we know that
the true global coordinates are a solution of the problem. But is this the only solution?
We use results from graph rigidity theory to give a necessary and su�cient condition
for the problem to have a unique solution. In two-dimensional space, this leads to a
particularly e�cient connectivity-based test for uniqueness.

2. Tightness of a convex relaxation: In general, when the local coordinates are noisy, we
use least squares �tting to estimate the global coordinates. After a suitable reduction,
this can be posed as a rank-constrained semide�nite program (REG-SDP). Dropping
the rank-constraint yields a convex relaxation, which has been empirically observed to
solve REG-SDP when the noise is below a certain threshold. Motivated by an analysis
of Bandeira et al [1], we o�er an explanation of this phenomenon by analyzing the
Lagrange dual of the relaxed problem.

3. Convergence of an iterative solver: Instead of working with a convex relaxation, we can
try directly solving REG-SDP by appropriately splitting the constraint set, and formally
applying the alternating direction method of multipliers (ADMM). Empirically, this
nonconvex ADMM algorithm has been demonstrated to perform well in the context
of multiview registration. We analyze convergence of the iterates generated by this
algorithm, and show how noise in the measurements a�ects convergence behavior.
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Chapter 1

Introduction

Registration problems arise in situations where we wish to reconstruct an underlying global
structure, given access to multiple local snapshots of that structure, such as in sensor network
localization and multiview registration. Suppose there are N labelled points with unknown
coordinates in a d-dimensional Euclidean space, and there are M observers each of whom
observes a subset of points. Each observer assigns coordinates to the points they observe
in their local frame of reference. The registration problem is to infer the global coordinates
of the N points given the following: (i) the points observed by each observer, (ii) the local
coordinates assigned to the observed points for every observer, (iii) the kind of transform that
relates the local frame of reference of each observer to the global frame of reference.

x̄1

x̄2

x̄3

x̄4

x̄5

P1

P2

P3

x2,3

x3,3

x4,3

x5,3

P3

x1,1

x2,1

x3,1

P1

x1,2

x4,2

x5,2 P2
z4 z5P3

z1

z2 z3

P1

P2

(a) (b) (c)

Figure 1.1: A rigid registration scenario. There are N = 5 labelled points, and M = 3 observers.
The set of points observed by observer i is denoted by Pi ; here P1 = {1, 2, 3}, P2 = {1, 4, 5}, P3 =
{2, 3, 4, 5}. (a) depicts the ground-truth, where x̄i denotes the ground-truth global coordinates
of point i . (b) depicts the three local coordinate systems corresponding to the observers; xk,i
denotes the local coordinates of the k-th point assigned by the i-th observer (based on this
information, we wish to recover the ground-truth global coordinates of every point). (c) A
solution to the problem. Note that (a) and (c) are not exactly the same, but are related via a
rigid transform, which is the best we can hope to do with the given information.

1



2 Chapter 1. Introduction

The rigid registration problem is the registration problem where the local frames of reference
are related to the global frame of reference by unknown rigid (Euclidean) transforms (see Fig.
1.1). A rigid or Euclidean transform in �d is a surjective distance-preserving transform. Any
rigid transform can be seen as a composition of an orthogonal transform (rotation, re�ection)
and a translation, and is denoted by (O, t), where O denotes the orthogonal transform, and t
denotes the translation. Speci�cally, rigid transform (O, t) maps a point x to the point Ox + t.

1.1 Application: Sensor Network Localization

As a concrete application of rigid registration, consider an adhoc wireless network consisting
of geographically distributed sensor nodes with limited radio range. To make sense of the
data collected from the sensors, one usually requires the positions of the individual sensors.
It is often not feasible to equip each sensor with a GPS due to cost, power, and weight
considerations. On the other hand, we can estimate (e.g. using time-of-arrival) the distances
between sensor that are within the radio range of each other [2]. The problem of estimating
the sensor locations from the available inter-sensor distances is referred to as sensor network
localization (SNL) [2, 3]. Recently, scalable divide-and-conquer approaches for SNL were

1

2

3

4

5

6

7

8
9

10

Figure 1.2: Sensor network localization scenario. The sensors within the radio range of each
other are identi�ed with a dashed closed curve (patch). For instance, sensor nodes 1, 2, 3, 5, 6
in the blue patch can communicate among themselves and thus all the inter-sensor distances
among these sensors are known. Similarly, inter-sensor distances for sensors in the red patch,
and inter-sensor distances for sensors in the green patch are known. Based on this information,
we wish to infer the global structure of the sensor network. This, in particular, entails inferring
distances between sensors that do not belong to the same patch (e.g., sensors 1 and 9).



1.2. Problem Statement 3

proposed in [4, 5], where the network is �rst subdivided into smaller subnetworks that can
be e�ciently localized. The localized subnetworks are then registered in a global coordinate
system to obtain the positions of the nodes in the original network.

More speci�cally (see Fig. 1.2), suppose the sensor network contains N nodes. This
network is divided into M subnetworks, where each subnetwork consists of sensors that are
within the radio range of each other (following [5], we call each subnetwork a patch). Thus,
the distance between any two sensor nodes in a patch are known. Now, for each patch, a
computationally e�cient algorithm called classical multidimensional scaling (cMDS) [3, 6]
is used to compute coordinates of nodes in that patch. However, since this computation is
based solely on the inter-sensor distances, the coordinates returned by cMDS for a patch
will in general be an arbitrarily rotated, �ipped, and translated version of the ground-truth
coordinates. The network is thus divided into M patches, where each patch can be regarded
as constituting a local coordinate system which is related to the global coordinate system by
an unknown rigid transform. We now want to assign coordinates to the nodes in a global
coordinate system based on these patch-speci�c local coordinates. In other words, we want
to solve the rigid registration problem. Since the local coordinate systems are related to the
ground-truth coordinate system via unknown rigid transforms, solving this problem involves
estimating these rigid transforms and “undoing” them to obtain global coordinates of the
nodes (Fig. 1.1). Similar registration problems arise in other applications such as manifold
learning, computer vision, and protein structure determination [7, 4, 5, 8, 9, 10, 11, 12, 13].

1.2 Problem Statement

To better facilitate discussion of our contribution in this dissertation, we formally describe
the rigid registration problem. Suppose that we have N points in �d , which we label using1

S = [1 : N ]. Let P1, · · · , PM be subsets of S, where Pi is the subset of points observed by
observer i . We refer to each Pi as a patch and let P = {P1, · · · , PM } be the collection of
patches. A natural way to represent the point-patch correspondence is using the bipartite
graph ΓC = (S,P,E), where (k, Pi) ∈ E if k ∈ Pi ; with a slight abuse of notation, we use (k, i)
in place of (k, Pi). We refer to ΓC as the correspondence graph.

We associate with each patch a local coordinate system: if (k, i) ∈ E, let xk,i ∈ �d be
the local coordinates of point k in patch Pi . Suppose the local coordinate measurements
are clean, i.e., we do not incur any noise in the measurement of the local coordinates. Let
x̄1, . . . , x̄N ∈ �d be the (unknown) true global coordinates of the N points, and let (Ōi , t̄i)
denote the (unknown) true rigid transform that relates local coordinates of points in Pi to
their corresponding global coordinates. That is, for each k ∈ Pi , we have

x̄k = Ōixk,i + t̄i . (1.1)
1we use [m : n] to denote the set of integers {m, . . . ,n}.



4 Chapter 1. Introduction

Thus, the rigid registration problem (when the local coordinate measurements are clean)
becomes:
Given a correspondence graph ΓC = (S,P,E) and local coordinates {xk,i : (k, i) ∈ E}, �nd an
N -tuple of global coordinates Z = (zk)Nk=1, and anM-tuple of patch transforms R = ((Oi , ti))Mi=1,
such that

(REG) zk = Oixk,i + ti , (k, i) ∈ E.

In general, the local coordinate measurements, xk,i for (k, i) ∈ E are noisy. In this case, we
cannot expect the system of equations REG to hold exactly. Instead, we resort to least-squares
�tting to solve the registration problem. More precisely, we consider the following least-
squares minimization over ((Oi , ti))Mi=1 and (zk)Nk=1 [14] to estimate the rigid transforms and
the global coordinates:

(LS-REG) min
(Oi ),(ti ),(zk )

M∑
i=1

∑
k∈Pi

‖zk −
(
Oixk,i + ti

)
‖2.

1.3 Main Contributions

We now give an overview of the main results we prove in this dissertation. Each subsection
here corresponds to a chapter in the dissertation, where the subsection title indicates the
relevant chapter number.

1.3.1 Chapter 2: On Unique Registrability

Suppose the given local coordinate measurements of the rigid registration problem are clean.
In this case, the true global coordinates (x̄k)Nk=1 and the patch transforms (Ōi , t̄i) satisfy REG
(see equation (1.1)). But is this solution unique? Can two di�erent assignments of global
coordinates (not related via a rigid transform) lead to the same observed local coordinates? This
is a fundamental question one would be faced with when coming up with algorithmic solutions
to the registration problem [14, 5]. By uniqueness, we mean uniqueness up to congruence, i.e.,
any two solutions that are related through a global rigid transform are considered identical.
For instance, in Fig. 1.1, solutions (a) and (c) are considered identical since they are related by
a global rotation (loosely speaking, they have the same shape).

In Chapter 2, using results from graph rigidity theory, we give a necessary and su�cient
condition for REG to have a unique solution. Namely, given an instance of REG, we construct
a graph (called body graph) corresponding to the given problem, and check if this graph is
globally rigid to determine if REG has a unique solution. We now brie�y describe the concept
of global rigidity of a graph and what we mean by a body graph, before stating an informal
version of our result.
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Figure 1.3: The triangular graph in (a) is globally rigid in �2 because any other edge-length-
preserving embedding of this graph in �2 would be congruent to the embedding in (a). On
the other hand, (b) and (c) are two embeddings of the same underlying graph. Note that the
embeddings have the same edge lengths, but are not congruent; thus, this graph is not globally
rigid in �2. We make these notions more precise in Chapter 2.

Consider a graph embedded in Euclidean space. The notion of global rigidity deals with
the following question: Is there a non-congruent alternate embedding of the graph with the
same edge lengths? Informally, is there an embedding that preserves the edge lengths but
has a di�erent shape? If the answer to this question is in the negative, the graph is said to be
globally rigid. For instance, the triangular graph in Fig. 1.3a is globally rigid in �2. On the
other hand, the graph in Fig. 1.3b is not globally rigid in �2 because Fig. 1.3c is an alternate
embedding of the same graph which preserves all the edge lengths but has a di�erent shape.

1 4

32
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P1

x1,2
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x5,2 P2

Figure 1.4: A problem instance of REG and its corresponding body graph. An edge between
vertices i and j in the body graph corresponds to the fact that there is a patch that contains
both point i and point j.

We now clarify what we mean by a body graph. Given a problem instance of REG, the
corresponding body graph is a graph with the number of vertices equal to the number of
points in the problem instance: each vertex corresponds to a point, and there is an edge



6 Chapter 1. Introduction

between vertices i and j of the body graph, if there exists a patch that contains both point i
and point j (see Fig. 1.4).
Informally, our main results on the uniqueness of solution to REG are as follows.

Theorem (Informal). Under mild assumptions, REG has a unique solution if and only if the
corresponding body graph is globally rigid.

For rigid registration in 2-dimensional space, we obtain a particularly simple characteriza-
tion for uniqueness of solution.

Corollary (Informal). Under mild assumptions, REG in �2 has a unique solution if and only if
the corresponding body graph is 3-connected.

Furthermore, using these results, we resolve a conjecture on uniqueness posed in [5],
which was stated in terms of quasi-connectedness of the correspondence graph. To do this, we
relate quasi-connectedness of the corresondence graph to the standard vertex-connectivity of
the body graph, and show that the conjecture holds in 2-dimensional space, and that it fails to
hold in spaces of dimension 3 and higher.

1.3.2 Chapter 3: Tightness of Convex Relaxation

Recall that when the local coordinate measurements in the registration problem are noisy, we
use least-squares minimization LS-REG to solve the registration problem. As we shall see in
Chapter 3, LS-REG essentially reduces to the following rank-contrained semide�nite program:

(REG-SDP)

min
G∈�Md

+

Tr (CG)

subject to [G]ii = Id , i ∈ [1 : M],

rank(G) = d,

where �Md
+ denotes the cone of symmetric Md × Md positive semide�nite matrices, [G]ii

denotes the i-th d × d diagonal block of the Md × Md matrix G, and Id denotes the d × d

identity matrix. This is a standard semide�nite program (SDP), but with an additional rank
constraint which makes it nonconvex, and computationally hard (for d = 1, this problem class
includes MAXCUT [15]). However, by dropping the rank constraint, we obtain the following
computationally tractable convex relaxation of REG-SDP:

(C-SDP)
min
G∈�Md

+

Tr(CG)

subject to [G]ii = Id , i ∈ [1 : M].

Suppose G∗ is global optimum for the relaxed problem C-SDP. The rank of G∗ is not
guaranteed to be d , and so G∗ might not even be feasible for REG-SDP. Thus, if rank(G∗) > d
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(it can never be less than d due to the constraint [G∗]ii = Id ), we have to “round” G∗ to a rank-d
matrix [14], which will generally be suboptimal for REG-SDP. However, if rank(G∗) = d , then
clearly G∗ is global optimum for REG-SDP as well, meaning that we have solved the original
nonconvex problem by solving the relaxed problem. In this case, we say that the relaxation is
tight [1]. Empirically, we notice the well-known phenomena of phase transition for convex
relaxations (e.g. see [16, 17]), where below a certain noise threshold, the relaxation remains
tight (see Fig. 1.5).

0 0.2 0.4 0.6 0.8 1
noise

0

1

2

3

4

ra
nk

(G
* )

Figure 1.5: Phase transition in tightness of C-SDP (d = 2). The plot shows the rank of global
optimum G∗ of C-SDP as a function of noise level in the measurements. Below a certain noise
threshold, the rank of G∗ is exactly 2, i.e., the relaxation is tight. Above this threshold, the
rank of G∗ may exceed 2, making it infeasible for REG-SDP.

In Chapter 3, we give a theoretical justi�cation of this phenomenon by analyzing the
Lagrange dual of C-SDP. Our analysis is in the spirit of the analysis in [1], where the au-
thors use Lagrange dual to study tightness of convex relaxation in the context of the phase
synchronization problem. Our main result is the following.

Theorem (Informal). Let C0 be the data matrix when the local coordinate measurements are
clean, and let C = C0 +W, whereW is the noise matrix. Then there exists η > 0 such that C-SDP
is tight if ‖W‖ < η.

1.3.3 Chapter 4: Convergence of Nonconvex ADMM

As discussed in the previous subsection, solving the convex relaxation C-SDP might produce a
solution infeasible for the original problem REG-SDP, in which case we would need to resort
to a suboptimal rounding step. This motivates the following question: Can we design an
iterative procedure that directly attacks the nonconvex problem REG-SDP instead of working
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with the relaxation C-SDP? In [9], the authors proposed an iterative procedure based on the
alternating direction method of multipliers (ADMM) [18] to solve REG-SDP, and demonstrated
empirically that it performs remarkably well in the context of multiview registration. As we
shall see in Chapter 4, in addition to obviating the need for any rounding, the algorithm in [9]
(henceforth referred to as REG-ADMM) provides appreciable savings in computation over
algorithms that solve the convex semide�nite program C-SDP.

ADMM algorithms applied to convex programs are well-studied, as exempli�ed by a much-
cited paper by Boyd et al [18]. Recently, however, there have been a slew of results showing
empirical success of ADMM algorithm applied to nonconvex programs [9, 19, 20, 21]. The
theory for nonconvex ADMM, though, is yet to catch-up to these empirical results. A handful
of theoretical analyses on nonconvex ADMM that do exist do not apply to REG-ADMM
because they rely on certain regularity assumptions that are not satis�ed by REG-SDP. In
Chapter 4, we remedy this by bypassing these assumptions to prove convergence results for
the REG-ADMM algorithm.

We brie�y describe the kind of challenge involved in characterizing convergence behavior
of REG-ADMM. Standard ADMM algorithm involves a �xed parameter ρ which a�ects the
update of primal and dual variables by the algorithm. For ADMM applied to convex programs,
the algorithm (under mild assumptions) can be shown to converge to global minimum for
any ρ, and with any primal and dual initialization [18]. On the other hand (see Fig. 1.6),
convergence of REG-ADMM depends not only on the parameter ρ, but also on the noise
level in the data measurements. Even when the local coordinates measurements are clean,
REG-ADMM may get stuck in a local minimum, depending on the value of parameter ρ. This
dependence of the limit point of REG-ADMM iterates on ρ is observed both at low and high
noise levels. Furthermore, when the noise in the data is relatively large (Fig. 1.6c), the iterates
of the algorithm may oscillate without converging if the parameter ρ is set to a small value.
What is perhaps surprising is that such non-attenuating oscillations for small values of ρ are
not observed when the noise level in the data is low (Figure 1.6b).

Our analysis throws light on the convergence behaviour of REG-ADMM observed at
di�erent levels of noise in the data. Following are informal versions of the main results we
prove in Chapter 4.

Theorem (Informal). If REG-ADMM converges, it does so to a stationary point of REG-SDP.

Theorem (Informal). Suppose noise in the data is below a certain threshold. Then, the REG-
ADMM iterates are attracted to the global minimum, if the initialization is in a close neighborhood
of the global minimum.

Theorem (Informal). Suppose the data is clean. Then given any primal initialization, we can
compute ρ0, such that REG-ADMM converges to global minimum for ρ ≤ ρ0.
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Further, using duality, we explain instability of REG-ADMM observed for high-noise data
when the parameter ρ is small.
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(a) Even with clean measurements, the iterates get stuck in a local
minimum when ρ = 1 (the optimum value is zero in this case).
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(b) There are no oscillations for small ρ when the noise is low.

0 100 200 300 400
iteration

25

30

35

40

ob
je

ct
iv

e

high noise
ρ = 1
ρ = 0.1
ρ = 0.05

(c) The iterates oscillate for small ρ when the noise is high.

Figure 1.6: Plot of REG-ADMM iterates for di�erent noise levels in the data measurements.

We conclude this dissertation with Chapter 5, where we review our results and suggest
future directions to further strengthen these results.





Chapter 2

On Unique Registrability

2.1 Introduction

In this chapter, we investigate the notion of uniqueness of solution to a rigid registration
problem. Since the sensor network localization problem discussed in Chapter 1 (Section 1.1) is
a canonical example of the rigid registration problem, we shall use the term network to denote
a collection of points in a Euclidean space, and the term node to refer to a point in the network.
Consider a d-dimensional network consisting of N labelled nodes, i.e. the nodes are embedded
in �d . There are M subsets of these nodes (patches). Each patch has associated with it a local
coordinate system, i.e., nodes in a patch are assigned coordinates in a local coordinate system
speci�c to that particular patch (patch coordinate system). The patch coordinate systems are
related to each other by unknown rigid transforms. Equivalently, each patch coordinate system
is related to the global coordinate system by an unknown rigid transform. Our problem is to
assign coordinates to every node in a global coordinate system. In such problems, a question
that naturally arises is that of uniqueness: Can we uniquely identify the global topology of
the network that is consistent with the information in various local coordinate systems? (We
call the network uniquely registrable if this is indeed the case.) Additionally, do we have
computationally e�cient tests to determine if the network is uniquely registrable? In this
chapter, we investigate these questions using results from graph rigidity theory.

More precisely, we formulate a necessary and su�cient condition for a network to be
uniquely registrable in terms of rigidity of the body graph of the network. This leads to a
particularly simple characterization of unique registrability for planar networks. As an upshot,
we resolve a conjecture posed recently [5] in the context of unique localizability of sensor
networks. The conjecture was made in terms of quasi-connectivity of a certain bipartite graph;
we translate this notion to that of vertex-connectivity of the body graph, and show that the
conjecture holds for planar sensor networks, and that it fails to hold for three and higher
dimensional networks.

2.1.1 Uniqueness in Rigid Registration

We begin by making precise the notion of uniqueness in the context of the rigid registration
problem. We �rst review the formal problem statement of the rigid registration problem.

11
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The node-patch correspondence (i.e. which nodes belong to which patch) is encoded by a
bipartite correpondence graph ΓC = (S,P,E), where S = [1 : N ], P = [1 : M], and (k, i) ∈ E
if and only if node k belongs to patch Pi . We associate with each patch a local coordinate
system: if (k, i) ∈ E, let xk,i ∈ �d be the local coordinates assigned to node k . Suppose the
local coordinate measurements are exact, i.e., the local coordinates given to us are noiseless.
Then, the rigid registration problem is as follows:
Given the correspondence graph ΓC = (S,P,E) and the local coordinates {xk,i : (k, i) ∈ E}, �nd
an N -tuple of global coordinates Z = (zk)Nk=1, and anM-tuple of patch transforms R = (Ri)

M
i=1,

such that

(REG) zk = Ri(xk,i), (k, i) ∈ E.

Suppose the true coordinates of the N nodes in the network are x̄1, · · · , x̄N , and the patch
coordinate system Pi is related to the global coordinate system by the rigid transform R̄i ,
i ∈ [1 : M]. Then, clearly, the true global coordinates (x̄k)Nk=1 and the patch transforms (R̄i)

M
i=1

satisfy REG. But is this solution unique? This is a fundamental question one would be faced
with when coming up with algorithmic solutions to the registration problem [14, 5]. Of course,
by uniqueness, we mean uniqueness up to congruence, i.e., any two solutions that are related
through a Euclidean transform are considered identical. Note that a solution to REG has two
components: the global coordinates, and the patch transforms. We will de�ne uniqueness
for each of these components. Suppose (X,R) is a solution to (2). By uniqueness of global
coordinates, we mean that given any other solution (Y,T) to REG, there exists a Euclidean
transform Q such that yk = Q(xk), k ∈ S. Similarly, by uniqueness of patch transforms, we
mean that there exists a Euclidean transform U such that Ti = U ◦ Ri , i ∈ [1 : M], where ◦
denotes the composition of transforms. At this point, we make the following observation.

Observation 1. It is clear that uniqueness of patch transforms implies uniqueness of global
coordinates. That is, given two solutions (X,R) and (Y,T) to REG, if there exists a Euclidean
transform U, such that Ti = U ◦ Ri , i ∈ [1 : M], then there exists a Euclidean transform Q, such
that yk = Q(xk),k ∈ S (in particular, take Q = U). However, uniqueness of global coordinates
does not imply uniqueness of patch transforms. That is, given two solutions (X,R) and (Y,T)
to REG, there may not exist a Euclidean transform U, such that Ti = U ◦ Ri , i ∈ [1 : M], even
if there exists a Euclidean transform Q, such that yk = Q(xk),k ∈ S. (This is explained with an
example in Fig. 2.1.)

Notice that each patch has just two nodes in the example in Fig. 2.1. However, we know
that a Euclidean transform in �d is completely speci�ed by its action on a set of d + 1 non-
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Figure 2.1: Consider the nodes S = {1, 2, 3}, and the patches P = {P1, P2, P3}, where P1 =
{1, 2}, P2 = {2, 3}, P3 = {1, 3}. The true global coordinates are X̄ = ((0, 0), (1, 0), (1, 1)), and
the true patch transforms are R̄ = (Id , Id , Id), where Id is the identity transform (i.e., each
patch coordinate system is same as the global coordinate system). Consider the Euclidean
transform T, which is a re�ection along the dotted line marked r , followed by a translation
of 2 units along the dotted ray marked t . Let R = (Id ,T, Id). Notice that even though both
(X̄, R̄) and (X̄,R) are solutions to REG, R is not congruent to R̄.

degenerate nodes1. Equivalently, if d + 1 or more non-degenerate nodes are left �xed by
a Euclidean transform, then the transform must be identity. This leads to the following
proposition.

Proposition 2. If every patch contains at least d + 1 non-degenerate nodes, then uniqueness of
global coordinates is equivalent to uniqueness of patch transforms.

Proof. Following Observation 1, we need only prove that uniqueness of global coordinates
implies uniqueness of patch transforms. Suppose we have two solutions (X,R) and (Y,T).
Following the uniqueness of global coordinates, there exists a Euclidean transform Q, such
that yk = Q(xk), k ∈ S. Fix some i ∈ [1 : M]. Since (Y,T) is a solution to REG, we have
yk = Ti(xk,i), k ∈ Pi . Thus, Q(xk) = Ti(xk,i), or xk = (Q−1 ◦ Ti)(xk,i), k ∈ Pi . On the other hand,
since (X,R) is also a solution to REG, we have xk = Ri(xk,i), k ∈ Pi . Combining the above,
we get (Q−1 ◦ Ti)(xk,i) = Ri(xk,i), k ∈ Pi . Since |Pi | ≥ d + 1, it follows that Q−1 ◦ Ti = Ri , or
Ti = Q ◦ Ri . This holds for every i ∈ [1 : M], which proves our claim. �

1A set of nodes in �d is said to be non-degenerate if their a�ne span is �d .
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In other words, if every patch contains at least d + 1 non-degenerate nodes, we need
not distinguish between uniqueness of global coordinates and uniqueness of patch transforms,
and we can generally talk about unique registrability without any ambiguity. Intuitively, it is
clear that for REG to have a unique solution, there must be su�cient overlap among patches.
In particular, ΓC must be connected. In Section 2.3, we will see that the notion of unique
registrability is essentially combinatorial in nature for almost every instance of the problem.

2.1.2 Related Work

The correspondence graph ΓC = (S,P,E) encodes the pattern of overlap among patches, which
makes it desirable to relate the problem of unique registrability to the properties of ΓC . In
[14], the authors propose a lateration criterion which guarantees unique registrability. We
recall that ΓC is said to be laterated if there exists a reordering of the patch indices such that
P1 contains at least d + 1 non-degenerate nodes, and Pi and P1 ∪ P2 ∪ · · · ∪ Pi−1 have at least
d + 1 non-degenerate nodes in common for i ≥ 2. This criterion, however, has two major
shortcomings. First, an e�cient test for lateration is not known. Second, lateration is a rather
strong condition. For instance, see Fig. 2.4, where ΓC is not laterated, but, as we will see later,
the network is uniquely registrable. More recently, the notion of quasi connectedness of ΓC was
introduced in [5], which was shown to be necessary for unique registrability, and conjectured
to be su�cient.

In a related work [22], rigidity theory is used to deal with unique localizability of nodes
in a general sensor network localization problem, where, given inter-node distances of a
subset of node-pairs, a graph is constructed with the vertices corresponding to the nodes,
and an edge between every node-pair whose inter-node distance is given; it is demonstrated
that this graph has to be globally rigid for unique localizability of the sensor network. Tools
from rigidity theory have also been used in network design problem [23], and in quantifying
robustness of networks [24].

2.1.3 Organization

The rest of the chapter is organized as follows. In Section 2.2, we review relevant de�nitions
and results from rigidity theory. In Section 2.3,we bring in the notion of body graph, introduced
in [25] in the context of a�ne rigidity, and show that unique registrability is equivalent to
global rigidity of the body graph. In Section 2.4, we address the conjecture posed in [5], namely
that quasi (d + 1)-connectivity of ΓC is necessary and su�cient for unique registrability in
�d . We show that quasi connectivity of ΓC is equivalent to vertex-connectivity of the body
graph, and use this to establish the conjecture for d = 2. Next, we give counterexamples to
show that the conjecture is false when d ≥ 3. Detailed proofs of some of the technical results
from Sections 2.3 and 2.4 are given in Section 2.6.
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2.1.4 Graph Notations

We will work with undirected graphs in this chapter. If H is a subgraph of G = (V ,E), which
we denote by H ⊆ G, then V (H ) denotes the set of vertices of H , and E(H ) denotes the set
of edges of H . A complete graph (or clique) on n vertices is denoted by Kn. Given a graph
G = (V ,E), and a set V ′ ⊆ V , the subgraph induced by V ′ is the graph G′ = (V ′,E′), where
E′ = {(i, j) ∈ E : i, j ∈ V ′}. The degree of a vertex v of a graph is the number of edges incident
on v . A path in a graph G = (V ,E) is an ordered sequence of distinct vertices v1, · · · ,vn ∈ V

such that (vi ,vi+1) ∈ E, 1 ≤ i ≤ n − 1. We denote a path by v1 − · · · −vn; v1 and vn are called
the end vertices of the path, and every other vertex of the path is an internal vertex. If v1 = a

and vn = b, we say that the path connects a and b, or that v1 − · · · −vn is a path between a

and b. Given subgraphs A and B, an A-B path is a path v1 − · · · − vn where v1 ∈ V (A) and
vn ∈ V (B). Given a subgraph A, a path v1 − · · · − vn is said to be within A, if vi ∈ V (A) for
every i ∈ [1 : N ]. Two paths are said to be disjoint if they do not have any vertex in common.
Two paths are said to be independent if they do not have any internal vertex in common. A
graph is said to be k-connected (or, k-vertex-connected) if it has more than k vertices and the
subgraph obtained after removing fewer than k vertices remains connected; equivalently, by
Menger’s theorem [26], there exists k independent paths between every pair of vertices of the
graph.

2.2 Rigidity Theory

Before moving on to our results, we recall some de�nitions and results from rigidity theory
[27, 28, 29, 30, 31].

2.2.1 Basic Terminology

Given a graph G = (V ,E), a d-dimensional con�guration is a map p : V → �d . The pair (G, p)
is called a d-dimensional framework. Throughout this chapter, ‖·‖ denotes the Euclidean
norm.

De�nition 3 (Equivalent frameworks). Two frameworks (G, p) and (G, q) are said to be equiv-
alent, denoted by (G, p) ∼ (G, q), if ‖p(u) − p(v)‖ = ‖q(u) − q(v)‖, for every (u,v) ∈ E.

De�nition 4 (Congruent frameworks). Two frameworks (G, p) and (G, q) are said to be con-
gruent, denoted by (G, p) ≡ (G, q), if ‖p(u) − p(v)‖ = ‖q(u) − q(v)‖ for every u,v ∈ V .

Thus, for two frameworks to be congruent, we require the distance between each vertex-
pair to be equal in the two frameworks (regardless of whether that vertex-pair corresponds to
an edge in the underlying graphG). In other words, congruent frameworks are related through
a rigid transform. Clearly, congruence implies equivalence, but the converse is generally not
true (see Fig. 2.2). This leads to the concept of global rigidity.
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Figure 2.2: The frameworks in (a) and (b) are equivalent because the corresponding edge
lengths are equal; however, they are not congruent because the distance between vertices 2
and 4 is not equal in the two frameworks. Thus, the framework in (a) is not globally rigid in
�2. On the other hand, it can be shown that the framework is locally rigid in �2. Observe
that there exists no continuous motion in �2 that takes (a) to (b). Also note that framework
(a) is not locally rigid in �3 since the lower triangle 4-1-3 can be rotated in 3-dimensional
space about the line 1-3 to get to framework (b), which is equivalent but non-congruent to
framework (a).

De�nition 5 (Globally rigid framework). A framework (G, p) is said to be globally rigid if any
framework equivalent to (G, p) is also congruent to (G, p).

In other words, if (G, q) ∼ (G, p), and (G, p) is globally rigid, then p and q must be related
via a rigid transform. We now de�ne local rigidity of a framework, which formalizes the
notion that the framework cannot be continuously deformed into an equivalent framework
(see Fig. 2.2, where (a) and (b) are locally rigid in �2, since they cannot be continuously
deformed while preserving edge lengths).

De�nition 6 (Locally rigid framework). A framework (G, p) is said to be locally rigid if there
exists ϵ > 0 such that any (G, q) ∼ (G, p) satisfying ‖p(v) − q(v)‖ ≤ ϵ,v ∈ V , is congruent to
(G, p).

2.2.2 Rigidity and Genericity

A fundamental problem in rigidity theory is the following: Given a d-dimensional framework
(G, p), decide whether it is (locally or globally) rigid in �d . The notions of local and global
rigidity depend not only on the graph, but also on the con�guration (see Fig. 2.3). This makes
testing of rigidity computationally intractable [32, 33]. A standard way of getting around this
is to make an additional assumption of genericity. A framework (or con�guration) is said to
be generic if there are no algebraic dependencies among the coordinates of the con�guration,
i.e., the coordinates of the con�guration do not satisfy any non-trivial algebraic equation with
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rational coe�cients. For a given graph, the set of non-generic con�gurations is a measure-zero
set in the space of all possible con�gurations [34], and hence almost every con�guration is
generic.

1 2

34

5

1 2

34

5

(a) (b)

Figure 2.3: Frameworks (a) and (b) with the same underlying graph. Framework (a) is not
globally rigid because vertex 4 can be re�ected along the line 1-5-3, which results in an
equivalent but non-congruent framework. Such an edge-length-preserving re�ection is not
possible in (b), which is globally rigid.

In the next two subsections, we will discuss how the genericity assumption makes local
and global rigidity a property of the graph, independent of any particular con�guration. This
opens up the possibility of coming up with combinatorial characterizations of rigidity. In
particular, we will look at combinatorial characterizations of local and global rigidity in �2.
In the �nal subsection, we will brie�y discuss the algorithmic implications of genericity.

2.2.3 Generic Local Rigidity

We introduce the notion of in�nitesimal rigidity of a framework (G, p), which, in general,
is a stronger notion than the local rigidity of (G, p), but is equivalent to local rigidity if p is
generic [28]. Loosely speaking, given a graph G = (V ,E) and a framework (G, p), we look at
motions that the vertices of G could make, starting with con�guration p, such that the edge
lengths are preserved at the instant of starting out. If every such motion also instantaneously
preserves the distance between vertex pairs that do not form an edge, we say that (G, p) is
in�nitesimally rigid. More precisely, let v be the map that assigns the motion vector v(i) to
vertex i ∈ V . For the edge lengths of the framework (G, p) to be preserved instantaneously,
the net motion of an edge should have no component along the edge itself, which can be
expressed as

(p(i) − p(j))>(v(i) − v(j)) = 0, (i, j) ∈ E. (2.1)
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Writing (2.1) in the matrix form, we get

R(G, p)v = 0, (2.2)

where R(G, p) is called the rigidity matrix of (G, p). The matrix R(G, p) has |E | rows and d |V |

columns, where each row corresponds to an edge ofG and d consecutive columns corresponds
to a vertex (columns indexed (i − 1)d : id correspond to vertex i). The matrix is populated
as follows: if e = (i, j) ∈ E, then for the row corresponding to e , we �ll the d columns
corresponding to vertex i with the elements of p(i) − p(j); similarly, we �ll the d columns
corresponding to vertex j with the elements of p(j) − p(i), and the remaining columns in
that row are set to 0. For instance, if the framework (G, p) is as in Fig. 2.2(a), and if we let
p(i) = (xi ,yi) ∈ �2, then R(G, p) is given by



x1 − x2 y1 − y2 x2 − x1 y2 − y1 0 0 0 0
x1 − x3 y1 − y3 0 0 x3 − x1 y3 − y1 0 0

0 0 x2 − x3 y2 − y3 x3 − x2 y3 − y2 0 0
x1 − x4 y1 − y4 0 0 0 0 x4 − x1 y4 − y1

0 0 0 0 x3 − x4 y3 − y4 x4 − x3 y4 − y3


.

With a slight abuse of notation, v is interpreted as a d |V | ×1 column vector formed by stacking
all the motion vectors in a single column. From (2.2), it is clear that any motion v which
instantaneously preserves all the edge lengths of (G, p) belongs to the nullspace of R(G, p).
Thus, v corresponding to any Euclidean motion, i.e. a motion that moves the entire framework
(G, p) without deformation, would belong to the nullspace of R(G, p). Assume that p is non-
degenerate. Then, the dimension of the subspace formed by Euclidean motions equals the
dimension of the d-dimensional Euclidean group, which is d(d + 1)/2. This implies that the
nullity of R(G, p) is at least d(d + 1)/2. We say that the framework (G, p) is in�nitesimally
rigid if the nullity is exactly d(d + 1)/2, or equivalently, if rank(R(G, p)) = d |V | − d(d + 1)/2.

In�nitesimal rigidity of (G, p) turns out to be both necessary and su�cient for local rigidity
of (G, p) if p is generic [28]. This implies that local rigidity of a generic framework (G, p)
has a complete characterization in terms of rank(R(G, p)). Moreover, given a graph G, the
rank of the rigidity matrix is the same for any generic framework [27, 28]. As a result, we
have the following useful fact which illustrates the computational tractability a�orded by the
genericity assumption.

Proposition 7 ([27, 28]). Local rigidity is a generic property, i.e., either all or none of the generic
con�gurations of a graph form a locally rigid framework.

Thus, we can talk of a graph being generically locally rigid, by which we mean that every
generic con�guration of the graph results in a locally rigid framework. This suggests the exis-
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tence of combinatorial characterizations for generic local rigidity. In fact, any combinatorial
characterization of generic local rigidity of a graph G is based on the following observations.

Observation 8.

(i) Local rigidity of a generic framework is entirely characterized in terms of the rank of the
rigidity matrix.

(ii) Rank of the rigidity matrix is the same for any generic framework of G.

Observation 8.(i) highlights the importance of the linear dependence relation among the
rows of the rigidity matrix, and motivates the following de�nition.

De�nition 9 (Independence). Given a graph G , a subgraph H ⊆ G is said to be independent in
�d if the rows of the rigidity matrix R(G, p) indexed by the edge set E(H ) are linearly independent
for a d-dimensional generic framework (G, p).

Because of Observation 8.(ii) above, independence is well-de�ned. That is, if the rows of the
rigidity matrix indexed by E(H ) are linearly independent for a generic framework, then they
are linearly independent for every generic framework. This can be seen by considering (H , p|H )
as a generic framework of the subgraph H , and noting that the rows of R(H , p|H ) are linearly
independent if and only if the rows of R(G, p) indexed by E(H ) are linearly independent.

From the rank condition for in�nitesimal rigidity, it is clear that a graph G is generically
locally rigid if and only if it has an independent subgraph with d |V | − d(d + 1)/2 edges. Thus,
combinatorial characterization of generic local rigidity boils down to characterizing indepen-
dence of a graph solely in terms of the graph properties. We have such a characterization in
�2 due to Laman [35].

Theorem 10 ([35]). A graphG = (V ,E) is independent in�2 if and only if |E(H )| ≤ 2|V (H )| −3
for every subgraph H ⊆ G with |V (H )| ≥ 2.

The next corollary follows immediately.

Corollary 11. If G = (V ,E) is independent, and |E | = 2|V | − 3, then G is generically locally
rigid in �2.

Finding such a characterization in �3 is a long-standing open problem in rigidity theory.
We present a few additional combinatorial characterizations for rigidity in �2 which we shall
need later. Speci�cally, we need Theorem 16 which characterizes redundant rigidity in �2. A
graph is said to be redundantly rigid in �d if the graph is generically locally rigid in �d , and
remains generically locally rigid in �d after removal of any edge. Redundant rigidity plays an
important role in the context of global rigidity. We �rst de�ne the notion of an M-circuit.
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De�nition 12 (M-circuit). Given a graph G, a subgraph H ⊆ G is said to be an M-circuit if H
is not independent, but every proper subgraph of H is independent.

In other words, an M-circuit H is a minimally dependent subgraph of G. The following
theorem from [31] characterizes an M-circuit in �2.

Theorem 13 ([31]). Consider a graph G = (V ,E). Then the following are equivalent in �2:

(i) G is an M-circuit.

(ii) |E | = 2|V | − 2 andG − e is minimally rigid for every e ∈ E (a graph is said to be minimally
rigid if the graph is generically locally rigid, but is not generically locally rigid after removal
of any edge).

(iii) |E | = 2|V |−2 and |E(H )| ≤ 2|V (H )|−3 for every subgraphH ⊆ G with 2 ≤ |V (H )| ≤ |V |−1.

Corollary 14. Complete graph K4 is an M-circuit in �2.

We now de�ne M-connectivity, and then close our discussion of generic local rigidity with
a theorem due to [36, 31], which gives us the characterization of redundant rigidity that we
are after.

De�nition 15 (M-connectivity). A graph G is M-connected if every pair of edges in G belongs
to an M-circuit of G.

Theorem 16 ([36, 31]). The following are true in �2:

(i) If a graph G is M-connected, then G is redundantly rigid.

(ii) If a graphG is 3-connected and each edge ofG belongs to anM-circuit, thenG is M-connected.

2.2.4 Generic Global Rigidity

We have seen that local rigidity is a generic property. The question of whether global rigidity
is a generic property was open until recently, when it was �nally resolved in the a�rmative
in [30]. Just as we had the rigidity matrix with which we could characterize local rigidity of a
generic framework, we have the notion of an equilibrium stress matrix using which we can
characterize global rigidity of a generic framework.

Given a graph G = (V ,E) and a framework (G, p), assign a scalar ωij to every (i, j) ∈ E,
such that ∑

j:(i,j)∈E
ωij(p(j) − p(i)) = 0, i ∈ V . (2.3)

Then ω = (· · · ,ωij , · · · ) is known as an equilibrium stress vector of the framework (G, p).
Equilibrium stress vector for a framework is not unique in general; this can be seen by
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observing from (2.3) that any vector in the nullspace of R(G, p)> is an equilibrium stress vector
of (G, p) [29].

To ascertain global rigidity of (G, p), we are interested in the existence of an equilibrium
stress vector that satis�es a particular property. To state what the property is, we regard an
equilibrium stress vector ω as inducing an n × n symmetric matrix Ω, called an equilibrium
stress matrix, with the entries made in the following manner: Ωi,j = −ωij for (i, j) ∈ E, Ωi,j = 0
for (i, j) < E, i , j, and each diagonal element chosen to make the corresponding row and
column sums zero.

Assume that the con�guration p is non-degenerate. From (2.3) and the fact that the vector
1 of all ones lies in the nullspace of Ω, it can be shown that the nullity of Ω is at least d + 1
for any equilibrium stress matrix Ω of (G, p) [30]. A generic framework (G, p) with at least
d + 2 vertices is globally rigid if [29] and only if [30], there exists an equilibrium stress matrix
whose nullity is exactly d + 1. Moreover, if a generic framework ofG has an equilibrium stress
matrix with nullity d + 1, then any generic framework of G also has an equilibrium stress
matrix with nullity d + 1 [29, 30]. In the case of a generic framework (G, p) with d + 1 or fewer
vertices, it is shown in [27] that (G, p) is globally rigid if and only if G is a complete graph.
Thus, we have the following proposition.

Proposition 17 ([30]). Global rigidity is a generic property, i.e. either all or none of the generic
con�gurations of a graph form a globally rigid framework.

In other words, under the assumption of genericity, global rigidity becomes a property
of the graph, and we can talk of a graph being generically globally rigid. This also tells us
that there ought to be characterizations of generic global rigidity solely in terms of the graph
properties.

Hendrickson [37] gave the following combinatorial conditions necessary for a graph to be
generically globally rigid in �d .

Theorem 18 ([37]). If a graph G with at least d + 2 vertices is generically globally rigid in �d ,
then

(i) G is (d + 1)-connected,

(ii) G is redundantly rigid in �d .

Later, Jackson and Jordan [31] showed that the conditions in Theorem 18 are also su�cient
for generic global rigidity in �2. Thus, we have the following combinatorial characterization
of generic global rigidity in �2.

Theorem 19 ([31]). A graph G is generically globally rigid in �2 if and only if either G is a
triangle, or
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(i) G is 3-connected, and

(ii) G is redundantly rigid in �2.

Conditions in Theorem 18 are not su�cient for generic global rigidity in �d for d ≥ 3. We
will see instances of such graphs in section 2.4.

2.2.5 Testing Generic Rigidity

The combinatorial characterization of graph independence given by Theorem 10 can be used
to obtain a deterministic polynomial-time algorithm for testing generic local rigidity in�2 [38].
Moreover, since redundant rigidity reduces to checking generic local rigidity after removing
an edge (and doing this for every edge), and there are polynomial time algorithms for testing
graph connectivity [39], Theorem 19 implies that there are deterministic polynomial time
algorithms for testing generic global rigidity in �2. This state of a�airs does not carry over to
higher dimensions since we do not have a complete combinatorial characterization for generic
local and global rigidity in �d for d ≥ 3. However, the fact that local and global rigidity are
generic properties, and that a randomly chosen con�guration of a graph is generic with high
probability, has led to e�cient randomized algorithms for testing rigidity. It is demonstrated
in [30] that testing for generic local and global rigidity has complexity RP, which means that
there is a polynomial-time randomized algorithm that never outputs a false positive, and
outputs a false negative less than half of the time.

We brie�y discuss the general algorithmic structure for randomized testing of rigidity as
detailed in [30]. Given a graph G, the algorithm picks a framework (G, p) with coordinates
chosen at random. In order to make the linear algebraic computations e�cient, it is desirable
to choose framework (G, p) with integer coordinates chosen from [1 : N ] at random. The
probability of algorithm returning a false negative depends inversely on N [30], which neces-
sitates that N be su�ciently large. For testing generic local rigidity, the algorithm outputs
decision based on the rank of the rigidity matrix R(G, p). For testing generic global rigidity,
there is an additional randomized procedure which involves picking an equilibrium stress
vector from the nullspace of R(G, p)>. The algorithm then computes the rank of the associated
equilibrium stress matrix Ω, and outputs a decision based on this. It is shown in [30] that
an equilibrium stress vector chosen in a ‘suitably random’ manner has an equilibrium stress
matrix Ω of minimal nullity, which justi�es the algorithm basing its decision on the rank of
such an Ω.

2.3 Unique Registrability

We now formulate a necessary and su�cient condition for unique registrability under the
following assumptions:

(A1) Each patch contains at least d + 1 non-degenerate nodes.
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Figure 2.4: In this example, S = [1 : 5] and P = {P1, P2, P3}, where P1 = {1, 2, 3}, P2 = {1, 4, 5}
and P3 = {2, 3, 4, 5}. (a) Visualization of the node-patch correspondence, (b) Correspondence
graph ΓC = (S,P,E), (c) Body graph ΓB .

(A2) The nodes are in generic positions.

We brie�y recall the rationale behind the assumptions. Under assumption (A1), uniqueness
of the global coordinates and uniqueness of the patch transforms become equivalent, making
unique registrability a well-de�ned notion (see Proposition 2). Moreover, we can easily force
this assumption for divide-and-conquer algorithms [8, 4, 5]. assumption (A2) allows us to
formulate conditions for unique registrability for almost every problem instance based solely
on the combinatorial structure of the problem (see Proposition 7).

We now introduce the notion of a body graph, which will help us tie unique registrability
to rigidity theory. For a network with correspondence graph ΓC = (S,P,E), consider a graph
ΓB = (V ,E), where V = S, and E = {(k1,k2) : k1,k2 ∈ Pi for some i ∈ [1 : M]}. In other words,
vertices of ΓB correspond to the nodes in the network, and we connect two vertices by an edge
if and only if the corresponding nodes belong to a common patch (see Fig. 2.4). We will call
ΓB the body graph of ΓC . We derive the term body graph from [25], where a similar notion
was introduced in the context of a�ne rigidity. Using the body graph, we now state our main
result, whose proof is deferred to Section 2.6.

Theorem 20. Under assumptions (A1) and (A2), the ground-truth solution (X̄, R̄) is a unique
solution of REG if and only if the body graph ΓB is generically globally rigid.

The import of Theorem 20 lies in the fact that generic global rigidity in an arbitrary
dimension can be tested using a randomized polynomial-time algorithm [30]. Moreover,
combining Theorem 20 with the combinatorial characterization of generic global rigidity in
Theorem 19, and using results from rigidity theory, we get the following characterization of
unique registrability in two dimensions; the proof is deferred to Section 2.6.
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Corollary 21. Under assumptions (A1) and (A2), a network is uniquely registrable in �2 if and
only if the body graph ΓB is 3-connected.

The implication of Corollary 21 is that (assuming each patch has at least 3 nodes) we need
only test for 3-connectivity to establish generic global rigidity of the body graph in �2. We
need not perform an additional check for redundant rigidity, as required by Theorem 19. As is
well-known, 3-connectivity can be tested e�ciently using linear-time algorithms [39].

2.4 Quasi Connectivity

We now address the conjecture posed in [5] which asserts that, under assumption (A1) and
the assumption that every set of d + 1 nodes is non-degenerate, quasi (d + 1)-connectivity
of the correspondence graph ΓC is su�cient for unique registrability in �d . We prove that,
under assumptions (A1) and (A2), the conjecture holds for d = 2, but fails to hold for d ≥ 3.
We recall the de�nition of quasi connectivity [5].

De�nition 22 (Quasi k-connectivity). The correspondence graph ΓC = (S,P,E) is said to be
quasi k-connected if any two vertices in P have k or more S-disjoint paths between them. (A set
of paths is S-disjoint if no two paths have a vertex from S in common.)

Observation 23. If a correspondence graph ΓC is quasi k-connected, we can infer the following
by dint of De�nition 22:

(a) There are at least k participating nodes in every patch. (By a participating node, we mean a
node that belongs to at least two patches.)

(b) Let ΓB be the body graph of ΓC . LetHi be the clique of ΓB induced by patch Pi where i ∈ [1 : M].
Then there are at least k disjoint Hi-Hj paths in the body graph, for every 1 ≤ i < j ≤ M (cf.
Fig. 2.5).

We relate quasi connectivity of the correspondence graph ΓC to connectivity of the associ-
ated body graph ΓB in the following theorem, whose proof we defer to Section 2.6.

Theorem 24 (Connectivity of ΓC and ΓB).

(i) If the correspondence graph ΓC is quasi k-connected, then the body graph ΓB is k-connected.

(ii) If each patch has at least k nodes and the body graph ΓB is k-connected, then the correspon-
dence graph ΓC is quasi k-connected.

We note some corollaries of Theorem 24. Corollary 25 was already proved in [5]; we give
an alternative proof that utilizes the body graph. Corollary 26 establishes the conjecture posed
in [5] for d = 2.
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Corollary 25. Under assumptions (A1) and (A2), quasi (d + 1)-connectivity of ΓC is a necessary
condition for unique registrability in �d .

Proof. From Theorem 20, unique registrability is equivalent to global rigidity of ΓB . From
Theorem 18, (d + 1)-connectivity of ΓB is a necessary condition for generic global rigidity of
ΓB in �d . The result now follows from Theorem 24. �

Corollary 26. Under assumptions (A1) and (A2), quasi 3-connectivity of the correspondence
graph ΓC is su�cient for unique registrability in �2.

Proof. Follows from Theorem 24 and Corollary 21. �

Corollary 26, in e�ect, says that the constraints imposed by quasi 3-connectivity of ΓC
ensure that ΓB is redundantly rigid in addition to being 3-connected, and hence generically
globally rigid in �2. But this trend does not carry over to d ≥ 3. We demonstrate it with two
examples for d = 3 (which appear in [40]), and then give a prescription for generating such
counterexamples in higher dimensions.
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Figure 2.5: The �gure shows a counterexample (Example 1) to the su�ciency of quasi 4-
connectivity of the correspondence graph for unique registrability in �3. (a) Correspondence
graph ΓC1, (b) Body graph ΓB1. The colored paths in (a) show the four S-disjoint paths between
P1 and P4. The corresponding disjoint H1-H4 paths in the body graph ΓB1 are colored in (b),
where H1 and H4 are cliques induced by patches P1 and P4 (see text for details).
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Example 1

Let S = [1 : 12], and P = {P1, · · · , P6}. That is, we have 12 nodes and 6 patches. Consider the
following node-patch correspondence:

P1 = {1, 2, 3, 4}, P2 = {3, 4, 5, 6}, · · · ,

P5 = {9, 10, 11, 12}, P6 = {11, 12, 1, 2}.
(2.4)

The correspondence graph ΓC1 and the associated body graph ΓB1 are shown in Fig. 2.5. It
is easy to verify that ΓC1 is quasi 4-connected, or equivalently (Theorem 24), that ΓB1 is 4-
connected. But, it can be shown [40] that the body graph ΓB1 is minimally rigid in �3, i.e. ΓB1

is generically locally rigid, but removing any edge destroys generic local rigidity. Hence ΓB1

is not redundantly rigid in �3. This implies (Theorem 18) that ΓB1 is not generically globally
rigid, and thus (Theorem 20), the network is not uniquely registrable in �3.

Example 2

In this example, we will see that quasi (d + 1)-connectivity of the correspondence graph is not
su�cient for generic global rigidity of the body graph, even if we ensure that the body graph
is redundantly rigid. Let S = [1 : 18], and P = {P1, · · · , P6}, where

P1 = {1, 2, 3, 4, 13}, P2 = {3, 4, 5, 6, 14}, · · · ,

P5 = {9, 10, 11, 12, 17}, P6 = {11, 12, 1, 2, 18}.
(2.5)

That is, we have added a non-participating node in each patch of Example 1. The corre-
spondence graph ΓC2, and the associated body graph ΓB2 are shown in Fig. 2.6. It is easy to
verify that ΓC2 is quasi 4-connected, or equivalently, that ΓB2 is 4-connected. Moreover, ΓB2

is redundantly rigid [40]. But, from the fact that ΓB1 in Example 1 is not generically globally
rigid in �3, it can be deduced (Proposition 34) that ΓB2 is also not generically globally rigid in
�3. Thus, the network is not uniquely registrable in �3.

Graphs such as ΓB2 in Example 2 above, which satisfy both conditions in Theorem 18, but
are not generically globally rigid in �d , are known as H-graphs. By an operation called coning,
which takes a graph G and adds a new vertex adjacent to every vertex of G, a d-dimensional
H-graph can be turned into a (d + 1)-dimensional H-graph [41, 42]. In terms of node-patch
correspondence, this equates to adding a new node that belongs to every patch. Thus, by
applying d − 3 coning operations to ΓB2, we can generate a node-patch correspondence with a
quasi (d+1)-connected correspondence graph, thus obtaining a network which is not uniquely
registrable in �d for d > 3.
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Figure 2.6: The �gure shows a counterexample (Example 2) to su�ciency of quasi 4-
connectivity of the correspondence graph for unique registrability in �3 even when the
body graph is redundantly rigid. (a) Correspondence graph ΓC2, (b) Body graph ΓB2 (see text
for details).

2.5 Discussion

In this chapter, we looked at the notion of unique registrability through the lens of rigidity
theory. Given that there are two families of unknowns inherent in the problem—the global
coordinates and the patch transforms—we �rst addressed the question as to what uniqueness
exactly means for the rigid registration problem. We ended up making a mild assumption of
non-degeneracy that makes the notion of uniqueness equivalent for both families of unknowns.
We then introduced the notion of body graph which allowed us to reformulate the question
of unique registrability into a question about graph rigidity. Speci�cally, we concluded that
unique registrability is equivalent to global rigidity of the body graph. This equivalence
opened up the possibility of using non-trivial results from rigidity theory. In particular, we
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showed that the necessary condition of quasi (d + 1)-connectivity of the correspondence
graph, which was conjectured in [5] to be su�cient for unique registrability in �d , is indeed
su�cient for d = 2, but fails to be so for d ≥ 3. The practical utility of these characterizations
is that they lead to e�ciently testable criteria for unique registrability. To ascertain unique
registrability in �2, we only need to test either quasi 3-connectivity of the correspondence
graph or 3-connectivity of the body graph. Two and three vertex-connectivity can be tested
e�ciently using linear-time algorithms [39]. For d ≥ 3, unique registrability can be tested
simply by testing generic global rigidity of the body graph, and there exists a polynomial-time
randomized algorithm for the latter.

2.6 Technical Proofs

In this section, we give proofs for Theorem 20, Corollary 21 and Theorem 24.

2.6.1 Proof of Theorem 20

We will show that unique registrability is equivalent to global rigidity of the body graph
framework corresponding to the ground-truth. Then, the assumption of genericity (A2) along
with Proposition 7 (genericity of local rigidity) allows us to remove the dependence on any
particular framework, thus proving the theorem. We �rst make some de�nitions specialized
to the registration problem which allow us to express the question of uniqueness registrability
in a form amenable to a rigidity theoretic analysis.

De�nition 27 (Node-patch framework). Given a correspondence graph ΓC = (S,P,E), and a
map x : S → �d that assigns coordinates to the nodes, the pair (ΓC ,x) is called a node-patch
framework.

De�nition 28 (Equivalence of node-patch frameworks). Two node-patch frameworks (ΓC ,x)
and (ΓC , y) are said to be equivalent, denoted by (ΓC ,x) ∼ (ΓC , y), if x(k) = Qiy(k), (k, i) ∈ E,
where Qi is a rigid transform.

De�nition 29 (Congruence of node-patch frameworks). Two node-patch frameworks (ΓC ,x)
and (ΓC , y) are said to be congruent, denoted by (ΓC ,x) ≡ (ΓC , y), if x(k) = Qy(k), k ∈ S, where
Q is a rigid transform.

Given a solution (X,R) to REG, where X = (xk)Nk=1, R = (Ri)
M
i=1, we will denote by x the map

that assigns to node k the coordinate xk , and say that (ΓC ,x) is the node-patch framework
corresponding to the solution (X,R).

Proposition 30. Let (X,R) and (Y,T) be two solutions to REG. Then the corresponding node-
patch frameworks (ΓC ,x) and (ΓC , y) are equivalent.

Proof. Since (X,R) and (Y,T) are solutions to REG, we have that x(k) = Ri(xk,i) and y(k) =
Ti(xk,i), k ∈ Pi , i ∈ [1 : M]. Thus x(k) = Qiy(k), where Qi = Ri ◦ T

−1
i . �
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Proposition 31. Let (X,R) be a solution to REG with the corresponding node-patch framework
(ΓC ,x) and let y be such that (ΓC , y) ∼ (ΓC ,x). Then there exists some T for which (Y,T) is a
solution of REG.

Proof. Indeed, (ΓC , y) ∼ (ΓC ,x) implies that there exists rigid transforms (Qi)
M
i=1 such that

y(k) = Qix(k), (k, i) ∈ E. Since (X,R) is a solution to REG, we have x(k) = Ri(xk,i), (k, i) ∈ E.
Thus, y(k) = (Qi ◦Ri)(xk,i), which shows that (Y,T) is a solution to REG, where Y = (y(k))N

k=1
and T = (Qi ◦ Ri)

M
i=1. �

Foregoing de�nitions and propositions allow us to express the condition of unique registrability
in a compact manner. Namely, let (ΓC , x̄) be the ground-truth node-patch framework. Then,
under assumption (A1), REG has a unique solution if and only if for any node-patch framework
(ΓC , y) such that (ΓC , y) ∼ (ΓC , x̄), we have (ΓC , y) ≡ (ΓC , x̄). The next two propositions relate
node-patch framework and body graph framework.

Proposition 32. Two node-patch frameworks (ΓC ,x) and (ΓC , y) are equivalent (De�nition 28)
if and only if the body graph frameworks (ΓB,x) and (ΓB, y) are equivalent (De�nition 3).

Proof. Suppose (ΓC ,x) ∼ (ΓC , y). Pick an arbitrary edge (k, l) ∈ E in the body graph ΓB = (V ,E).
From construction of ΓB , (k, l) ∈ E if and only if there is a patch, say Pi , that contains both the
nodes k and l . Since (ΓC ,x) ∼ (ΓC , y), there exists a rigid transform Qi such that x(k) = Qiy(k)
and x(l) = Qiy(l). This implies that x(k) − x(l) = Qi(y(k) − y(l)), from where it follows that
‖x(k) − x(l)‖ = ‖y(k) − y(l))‖. Thus, (ΓB,x) ∼ (ΓB, y).

Conversely, suppose (ΓB,x) ∼ (ΓB, y). Consider an arbitrary patch Pi . Note that any
subgraph of ΓB induced by a patch is a clique. This, along with the assumption that (ΓB,x) ∼
(ΓB, y), implies that ‖x(k)−x(l)‖ = ‖y(k)−y(l))‖ for every k, l ∈ Pi , which, in turn, implies that
there exists a rigid transform Qi such that x(v) = Qiy(v), v ∈ Pi . Thus, (ΓC ,x) ∼ (ΓC , y). �

Proposition 33. Two node-patch frameworks (ΓC ,x) and (ΓC , y) are congruent (De�nition 29)
if and only if the body graph frameworks (ΓB,x) and (ΓB, y) are congruent (De�nition 4).

The above result easily follows from De�nitions 4 and 29. We are now in a position to
complete the proof of Theorem 20. Suppose REG has a unique solution. We will show that the
body graph framework (ΓB, x̄) is globally rigid. Consider a framework (ΓB, y) ∼ (ΓB, x̄). Then,
by Proposition 32, (ΓC , y) ∼ (ΓC , x̄). By Proposition 31, this implies that (ΓC , y) correponds to a
solution of REG. Now, since REG has a unique solution, (ΓC , y) ≡ (ΓC , x̄). Thus, by Proposition
33, (ΓB, y) ≡ (ΓB, x̄).

Conversely, suppose (ΓB, x̄) is globally rigid. Let (Y,T) be a solution to REG. By Proposition
30, (ΓC , y) ∼ (ΓC , x̄). Hence, by Proposition 32, (ΓB, y) ∼ (ΓB, x̄). This, by global rigidity of
(ΓB, x̄), implies that (ΓB, y) ≡ (ΓB, x̄). Finally, by Proposition 33, (ΓC , y) ≡ (ΓC , x̄).
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2.6.2 Proof of Theorem 21.

Before proving Theorem 21, we state and prove the following proposition.

Proposition 34. Given a graph G = (V ,E), consider the graph G′ = (V ∪ {v′},E′) obtained by
adding a new vertex v′ toG and attaching it to a clique H ⊆ G , i.e., v′ is adjacent to every vertex
of H and to no other vertex of G . If G′ is generically globally rigid, then G is generically globally
rigid.

Proof. Suppose G is not generically globally rigid. Consider two frameworks (G, p) and (G, q)
which are equivalent but not congruent. To these frameworks, add the new vertex v′ to get
new frameworks (G′, p′) and (G′, q′) such that the distance between v′ and any vertex of the
subgraph H is equal in both (G′, p′) and (G′, q′). Note that this can be done because H is a
clique and so the subframeworks induced by H would be congruent in the two frameworks
(G, p) and (G, q). Clearly, the new frameworks (G′, p′) and (G′, q′) are equivalent. But they
are not congruent because (G, p) and (G, q) were not congruent to begin with. Thus, G′ is not
generically globally rigid. �

We now prove Theorem 21. The necessity of 3-connectivity of the body graph ΓB for
unique registrability in �2 follows from Theorem 20 and Theorem 18. We now establish
su�ciency.

Given that the body graph ΓB is 3-connected, we will prove that ΓB is generically globally
rigid in �2; this, by Proposition 20, would imply unique registrability in �2. By assumption
(A1), there are at least 3 nodes in each patch. Consider the following cases:

Case 1: Each patch contains at least 4 nodes.
Pick an arbitrary edge (k, l) belonging to ΓB . The fact that there is an edge between vertices
k and l implies that there must be a patch, say Pi , which contains the nodes k and l . Since Pi
contains at least 4 nodes, we can pick two nodes k̄ and l̄ belonging to Pi which are distinct
from the nodes k and l . Now, Pi induces a clique, say Hi , in ΓB . This implies that the subgraph
of ΓB induced by the vertex set {k, l , k̄, l̄} isK4, which is an M-circuit (Corollary 14) containing
the edge (k, l). The edge (k, l) was chosen arbitrarily, and thus, we have shown that every
edge of ΓB belongs to an M-circuit. Since ΓB is also 3-connected, we can use Theorem 16 to
conclude that ΓB is M-connected, and hence redundantly rigid. Thus, ΓB satis�es conditions
in Theorem 19, and is hence generically globally rigid in �2.

Case 2: There are patches with exactly 3 nodes.
Suppose there are m patches P1, · · · , Pm that contain exactly 3 nodes. Add a new node k1

exclusively to patch P1 and call the resulting patch P ′1. The e�ect of this on the body graph is
the addition of a degree-3 vertex k1 adjacent to the vertices of the clique induced by the 3
nodes in P1. Call the resulting body graph Γ1

B . Addition of a degree-k vertex to a k-connected
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graph results in a k-connected graph. Thus, Γ1
B is 3-connected. We continue inductively: after

obtaining ΓiB , add a new node ki+1 exclusively to patch Pi+1 to get P ′i+1 and the resulting body
graph Γi+1

B . Note that we preserve 3-connectivity at every step of the induction. We stop after
m steps, i.e., after we have obtained the body graph ΓmB . As a result of this inductive procedure,
every patch now contains at least 4 nodes. Hence, from the arguments made in Case 1 above,
ΓmB is generically globally rigid in �2. Now, ΓmB was obtained from Γm−1

B by addition of a
vertex and attaching it to a clique. Hence, from Proposition 34, Γm−1

B is generically globally
rigid in �2. Backtracking similarly in an inductive fashion and employing Proposition 34 at
every step, we deduce that the original body graph ΓB is generically globally rigid in �2.

2.6.3 Proof of Theorem 24.

We �rst prove Theorem 24.(ii). We are given that every patch has at least k nodes and the
body graph ΓB is k-connected. Let Hi and Hj be the cliques of ΓB induced by patches Pi and Pj ,
i , j. To establish quasi k-connectivity of ΓC , it su�ces to show that there exists k disjoint
Hi-Hj paths. Indeed, it is clear from De�nition 22 that the existence of k disjoint Hi-Hj paths
in ΓB implies the existence of k S-disjoint paths in ΓC between Pi and Pj . Add two new vertices
a and b to ΓB such that a is adjacent to every vertex of Hi (and to no other vertex of ΓB), and b

is adjacent to every vertex of Hj (and to no other vertex of ΓB). Since each patch has at least
k nodes, degree(a) ≥ k and degree(b) ≥ k . Addition of a degree-k vertex to a k-connected
graph results in a k-connected graph. Thus, the graph obtained after adding a and b to ΓB is
k-connected. This implies that there are at least k independent paths between a and b. Now,
each such path has to be of the form a − v1 − · · · − vr − b, where v1 ∈ Hi and vr ∈ Hj . This
is because a is adjacent only to vertices from Hi and b is adjacent only to vertices from Hj .
Removing a and b from every such independent path gives us k disjoint Hi-Hj paths.

We now prove Theorem 24.(i). Assume, without loss of generality, that no two patches
are identical. To prove k-connectivity of the body graph ΓB = (V ,E), we will show that given
arbitrary vertices a,b ∈ V , there exists k independent paths between them. We consider the
following cases:

Case 1: a and b do not belong to the same patch.
Suppose a ∈ Pi and b ∈ Pj , where i , j . Denote the cliques of ΓB induced by patches Pi and Pj

as Hi and Hj . Since ΓC is quasi k-connected, there exists k disjoint Hi-Hj paths (Observation
23). Note that a vertex inV (Hi)∩V (Hj) is also considered an Hi-Hj path. Let P = v1− · · · −vr

be one such path, where v1 ∈ Hi and vr ∈ Hj . Since Hi and Hj are cliques, (a,v1) ∈ E and
(vr ,b) ∈ E. Thus for each of the k disjoint Hi-Hj paths, we can, if needed, append vertices a
and b at the ends to make it of the form a − · · · − b. For instance, if v1 , a and vr , b, we
modify the path to a −v1 − · · · −vr −b. Thus, we have k independent paths between a and b.
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Case 2: a and b belong to the same patch.
Suppose a and b belong to patch Pl . Quasi k-connectivity of the correspondence graph
implies that each patch has at least k participating nodes (Observation 23). In particular, this
means that the clique Hl of ΓB induced by Pl has at least k vertices. Thus, if a and b belong
to Pl , there are at least k − 1 independent paths within the clique Hl . If Pl has more than k

nodes, we thus get k independent paths between a and b, all from within Hl . But suppose
Pl has exactly k nodes. We need an additional path between a and b that is independent of
the k − 1 paths we have from within Hl . Since we have exactly k nodes in Pl , each node has
to be participating, i.e., each node belongs to at least 2 patches. We consider the following
sub-cases:

Sub-case I: There is a patch Pi , i , l , that contains both a and b.
In this case we get the additional path of the form a −v −b, where v ∈ Pi and v < Pl , which,
clearly, is independent of the k − 1 paths from within Hl . The assumption that no two
patches are identical ensures the existence of the v in question.

Sub-case II: There is no patch other than Pl that contains both a and b.
Suppose a ∈ Pi and b ∈ Pj , i , j . From the quasi k-connectivity assumption, we know there
are k disjoint Hi-Hj paths. Moreover, recall that there are exactly k vertices in Hl . Consider
the following possibilities:

(i) Suppose every disjoint Hi-Hj path contains a vertex from Hl . This is possible if and
only if each path contains exactly one vertex from Hl . In this case, there exists a path
of the form a−v1− · · ·−vr , such thatv1, · · · ,vr < Hl , andvr ∈ Hj . From completeness
of the clique Hj , we can append b to the end of this path to get a −v1 − · · · −vr − b.
This path is independent of the k − 1 paths we have from within Hl . Thus we have the
required additional path.

(ii) The only other case is when there exists a disjoint Hi-Hj path that has no vertex from
Hl . Let that path be v1 − · · · −vr where v1 ∈ Hi and vr ∈ Hj . From completeness of the
cliquesHi andHj , we can append a andb to the ends of this path to geta−v1−· · ·−vr−b,
which is independent of the k − 1 paths we have from within Hl . Again, we have the
required additional path.
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Tightness of Convex Relaxation

3.1 Introduction

In rigid registration, we wish to compute the global coordinates of a set of N points, given the
local coordinates of M overlapping subsets of these points (patches), where each patch has its
own local coordinate system. The M local coordinate systems are related to each other by
rigid transforms, which are otherwise unknown. Suppose the N points are labelled [1 : N ],
and the M patches are denoted by {P1, · · · , PM }. If point k belongs to Pi , let xk,i denote its
corresponding local coordinate. Ideally, when the local coordinates xk,i are exact, the rigid
registration problem is to �nd global coordinates z1, . . . , zN , and rigid transforms (Oi , ti) such
that

zk = Oixk,i + ti , (3.1)

for every k ∈ Pi , i ∈ [1 : M]. In general, however, the local coordinate measurements may be
noisy and we cannot expect (3.1) to hold. Instead, we consider the following least-squares
minimization [14] to solve the registration problem:

(LS-REG) min
(Oi ),(ti ),(zk )

M∑
i=1

∑
k∈Pi

‖zk −
(
Oixk,i + ti

)
‖2.

The fundamental di�culty of LS-REG stems from the fact that variables Oi are constrained
to be in �(d), a nonconvex set. In fact, �(d) is not even connected [43]. E.g., �(1) = {−1, 1},
and �(2) is topologically equivalent to the union of two disjoint circles in �2. This makes it
di�cult to apply local optimization methods to solve LS-REG. In particular, if we initialize the
method on the wrong component, then we cannot hope to get close to the global optimum.

To combat these issues with the domain of optimization problem LS-REG, we derive an
equivalent optimization problem – a rank-constrained semide�nite program – in a higher-
dimensional space (i.e., we lift the problem to a higher dimension). We then drop the rank
constraint to get a convex semide�nite program, called a convex relaxation of the rank-
constrained problem. Overall, this procedure is an instance of the well-known technique of
Lift and Relax [44]. Empirically, we observe that the global optimum of the relaxed problem
is also a global optimum of the rank-constrained problem when the noise level in the local

33
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coordinate measurements is below a certain threshold (Fig. 3.1); in this case, we say that the
relaxation is tight [1]. In this chapter, we give a mathematical justi�cation of this phenomenon
using the theory of Lagrange duality. Our analysis is inspired by the analysis in [1], where the
authors explain a similar tightness phenomenon in the context of the phase synchronization
problem.

3.1.1 Organization

This chapter is organized as follows. In Section 3.2, we derive a convex relaxation for LS-REG.
In Section 3.3, we discuss how duality might help explain the tightness phenomenon of this
relaxation, and then derive the main result (Theorem 38) of this chapter. We conclude with a
discussion in Section 3.4, which is followed by an Appendix, where we give proofs of some of
the results used in Section 3.3.

3.1.2 Notations

[m : n] denotes the integers {m,m + 1, . . . ,n}. �k denotes the set of k × k symmetric matrices.
�k+ denotes the set of positive semide�nite (PSD) matrices, i.e., k × k symmetric matrices with
nonnegative eigenvalues. In denotes the n × n identity matrix. Any X ∈ �Md×Md can be seen
as being composed of M × M blocks, with each block of size d × d ; we denote the (i, j)-th
block of X by [X]ij . For a matrix X, ‖·‖ and ‖·‖2 denote the Frobenius and spectral norms; the
latter is simply the largest singular value σmax(X). We note that ‖X‖2 ≤ ‖X‖. Tr(A) denotes
the trace of A; and

〈
X,Y

〉
= Tr(XY) is the inner product between two symmetric matrices X

and Y. For a symmetric matrix X, λi(X) denotes the i-th eigenvalue, where we assume the
eigenvalues to be arranged in ascending order.

3.2 Convex Relaxation

In this section, we obtain a convex relaxation of LS-REG, which has been derived in detail in
[14]. Here, we outline the major steps of the derivation. Note that LS-REG can be rewritten as

min
(Oi )

[
min
(ti ),(zk )

M∑
i=1

∑
k∈Pi

‖zk − (Oixk,i + ti)‖2
]
. (3.2)

It was observed in [14] that if we �x the orthogonal transforms (Oi), the minimization
problem inside the square brackets in (3.2) is a quadratic convex optimization in (ti) and
(zk), with a closed-form optimum which is linear in (Oi). That is, if we knew the optimal
orthogonal transforms for LS-REG, the optimal values of (ti) and (zk) could be computed using
a simple linear transform. Based on this observation, LS-REG can be reduced to the following
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optimization involving just the orthogonal transforms:

(ORTHO-REG) min
O1,...,OM∈�(d)

M∑
i,j=1

Tr
(
CijO>j Oi

)
.

In particular, ORTHO-REG is equivalent to LS-REG in the following sense: Suppose (O∗i )Mi=1,
(t∗i )

M
i=1, (z∗

k
)N
k=1 are globally optimal for LS-REG. Then,

M∑
i=1

∑
k∈Pi

‖z∗k − (O
∗
i xk,i + t

∗
i )‖

2 = min
O1,...,OM∈�(d)

M∑
i,j=1

Tr
(
CijO>j Oi

)
= Tr

(
CijO∗>j O∗i

)
. (3.3)

Note that ORTHO-REG is a quadratic form in (Oi). Thus, de�ning O = (O1 · · ·OM ) ∈

�d×Md and C =
(
(Cij)

M
i,j=1

)
∈ �Md , we can rewrite ORTHO-REG as

min
O ∈D

Tr
(
CO>O

)
, (3.4)

where the domain D ⊂ �d×Md can be interpreted as the set of “row block-vectors”, i.e. row
“vectors” where each element of a row is a d × d orthogonal matrix. The data matrix C is an
Md ×Md positive semide�nite matrix [14]. This is because the objective in (3.4) is simply a
rewriting of the objective in LS-REG, which, being the sum of norms, is always nonnegative.

We now introduce a new variable, (Gram matrix) G = O>O ∈ �Md×Md , which allows us to
write (3.4) as

min
G ∈ S

Tr (CG) , (3.5)

where S ∈ �Md×Md consists of all matrices G which can be decomposed as G = O>O with
O ∈ D. To get a better characterization of domain S, note that any G ∈ S necessarily satis�es
the following properties:

(i) G ∈ �Md , i.e. G is symmetric;

(ii) G ∈ �Md
+ , i.e. G is positive semide�nite;

(iii) [G]ii = Id , where [G]ii denotes i-th diagonal block of G, and Id is d × d identity matrix;

(iv) rank(G) = d .

Conversely, it is not di�cult to show (using spectral decomposition) that any G ∈ �Md×Md

satisfying properties (i)-(iv) above, can be decomposed as G = O>O with O ∈ D. This implies
that properties (i)-(iv) fully characterize the set S. In other words, (3.5) can be written as the
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following optimization problem:

(REG-SDP)

min
G∈�Md

+

Tr (CG)

subject to [G]ii = Id , i ∈ [1 : M],

rank(G) = d,

where �Md
+ denotes the set of positive semide�nite symmetric matrices of size Md ×Md . This

is a standard semide�nite program (SDP) [45], but with an additional rank constraint. In
particular, observe that the nonconvex nature of ORTHO-REG is isolated in the rank constraint
of REG-SDP. This suggests an obvious convex relaxation of REG-SDP — simply drop the rank
constraint to get the following convex semide�nite program:

(C-SDP)
min
G∈�Md

+

Tr(CG)

subject to [G]ii = Id , i ∈ [1 : M].

Let G∗ be a global optimum of C-SDP. From the fact that the diagonal blocks of G∗ are
Id , we get that rank(G∗) ≥ d (see Proposition 40). If rank(G∗) = d , then clearly G∗ is globally
optimum for REG-SDP as well, meaning that we have solved the nonconvex problem by
solving its convex relaxation. That is, the convex relaxation is tight. Empirically, we notice the
well-known phenomena of phase transition for convex relaxations (e.g. see [16, 17]), where
below a certain noise threshold in the data, the relaxation remains tight (see Fig. 3.1). In case
of C-SDP, the data is the matrix C, as it encodes the information about pairwise relations
among the M orthogonal transforms we are to estimate. Data matrix C ultimately depends on
the local coordinates xk,i . If these local coordinate measurements are exact, we say that C is
clean; otherwise, we say that C is noisy.

3.3 Tightness of Convex Relaxation

To begin with, let us clarify what we want to prove in order to explain the tightness behavior
of C-SDP. Denote by C0 the clean data matrix, i.e. the data matrix for the case when the local
coordinate measurements are exact. Since the local coordinate measurements are clean, we
know that the ground-truth rigid transforms relating patch coordinate systems to the global
coordinate system solve the registration problem. Let the local coordinate system for patch Pi

be related to the global coordinate system via rigid transform (Ōi , t̄i). Let G0 be de�ned by
[G0]ij = Ō>i Ōj , for i, j ∈ [1 : M]. We will see (Proposition 39) that G0 is a global minimizer for
C-SDP when the data matrix is clean. Moreover, rank(G0) = d . Thus, C-SDP is tight when the
data matrix is clean.

Now, suppose the local coordinate measurements are noisy. Denote the corresponding
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Figure 3.1: Phase transition for tightness of C-SDP (d = 2). The plot shows the rank of
the global optimum G∗ as a function of the noise level in the data C. Below a certain noise
threshold, the rank of G∗ is exactly 2, i.e., the relaxation is tight. Above this threshold, the
rank of G∗ exceeds 2, making it infeasible for REG-SDP.

data matrix by C = C0 +W, where the matrix W is the perturbation because of the noisy
measurements. With the noisy data matrix C (= C0+W), let G∗ be global minimizer for C-SDP.
To explain the tightness behavior of C-SDP, we want to prove that rank(G∗) = d when the
“magnitude” of noise W is not too large. In short, perturbing the data matrix, C0 → C, perturbs
the optimum of C-SDP, G0 → G∗, and we want to show that rank(G∗) = rank(G0) = d if the
perturbation in the data matrix is not too large.

Stated as above, it is not very clear how to proceed ahead. This is where we bring KKT
conditions [45] into play: Loosely speaking, KKT conditions state the necessary and su�cient
conditions that must hold at optimum of a convex program, provided some regularity condition
is satis�ed. Before clarifying how using KKT conditions helps us explain tightness behavior
of C-SDP, we explicitly state the KKT conditions for C-SDP in the following lemma.

Lemma 35. G∗ is a KKT point of C-SDP if there exists a block-diagonal matrix Λ∗ ∈ �Md such
that

(a) G∗ ∈ �Md
+ , [G∗]ii = Id ,

(b) C + Λ∗ ∈ �Md
+ , and

(c) (C + Λ∗) G∗ = 0.

(We call Λ∗ the dual variable corresponding to G∗.)
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We defer the proof of this lemma to the Appendix of this chapter. Observe that the identity
matrix IMd is strictly feasible for C-SDP. Thus, by Slater’s condition [45], the KKT conditions
in Lemma 35 are both necessary and su�cient for G∗ to be a global minimizer of C-SDP
[45]. Note that we refer to Λ∗ as the dual variable corresponding to G∗: this is because, given
a global minimizer G∗, there is a unique block-diagonal matrix Λ∗ satisying conditions in
Lemma 35 (see Proposition 36).

The KKT conditions in Lemma 35 give us an indirect way of proving rank(G∗) = d . Let Λ∗

be as in Lemma 35. Then, nullity(C+Λ∗) ≥ d . This is because: (i) (C+Λ∗)G∗ = 0 is equivalent
to the fact that the columns of G∗ lie in the null space of C + Λ∗, and (ii) rank(G∗) ≥ d is
equivalent to the fact that the column space of G∗ has dimension at least d . In fact, this also
shows that

nullity(C + Λ∗) = d =⇒ rank(G∗) = d . (3.6)

In other words, to prove that rank(G∗) = d , it is su�cient to prove that nullity(C + Λ∗) = d ,
where Λ∗ is the dual variable corresponding to G∗. The pertinent question now is: How do
we �nd a candidate for Λ∗? Fortunately, the KKT conditions in Lemma 35 provide an answer:
Any block-diagonal matrix Λ∗ satisfying conditions in Lemma 35 can be expressed in terms of
G∗; the following proposition gives the explicit dependence of Λ∗ on G∗ (we defer the proof
to the Appendix of this chapter).

Proposition 36. Let G∗ and Λ∗ be as in Lemma 35. Then

Λ∗ = −bd(CG∗), (3.7)

where, bd is the linear operator that leaves the diagonal blocks untouched and sets other elements
to 0.

3.3.1 Main Result

Before stating the main result of this chapter, we note a standard result from matrix analysis
– Weyl’s theorem [46] – which quanti�es perturbation in the eigenvalues of a (symmetric)
matrix in terms of the perturbation in the matrix.

Theorem 37 (Weyl). Let X,Y ∈ �n×n be symmetric. Then for j ∈ [1 : n],

λj(X) − ‖Y‖2 ≤ λj(X + Y) ≤ λj(X) + ‖Y‖2.

We now state the main result of this chapter concerning the tightness of C-SDP, and see
how the proof of this result exploits duality. Recall: C0 is the clean data matrix and G0 is the
Gram matrix of the ground-truth rigid transforms (G0 globally minimizes C-SDP for the clean
data matrix, see Proposition 39); C is the noisy data matrix and G∗ is global minimizer for
C-SDP corresponding to the noisy data matrix.
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Theorem 38. Suppose nullity(C0) = d . Let C = C0 +W be the noisy data matrix. Then there
exists some η > 0 such that rank(G∗) = d (i.e. C-SDP is tight) if ‖W‖ < η.

Proof. Let Λ∗ be the dual corresponding to G∗. From our discussion preceding equation (3.6),
we know that nullity(C + Λ∗) ≥ d . Moreover, equation (3.6) says that in order to prove
rank(G∗) = d , it is su�cient to prove nullity(C + Λ∗) = d . In other words, it is enough to
prove that λd+1(C + Λ∗) > 0. From Proposition 36, we have that

C + Λ∗ = C − bd(CG∗)

= C0 +W − bd((C0 +W)G∗)

= C0 +W − bd(C0G∗) − bd(WG∗)

= C0 +W − bd(C0(G∗ − G0)) − bd(WG∗)︸                                       ︷︷                                       ︸
A

To get the last equality, we have added a super�uous term bd(C0G0). We can do this because,
as we will show in the next subsection (equation (3.10)), C0G0 = 0. Thus, in summary,
C + Λ∗ = C0 + A, where A =W − bd(WG∗) − bd(C0∆), and ∆ = G∗ − G0 is the perturbation
in the optimum of C-SDP due to pertubation in the data matrix. Now, by Weyl’s theorem,

λd+1(C + Λ∗) ≥ λd+1(C0) − ‖A‖2. (3.8)

So, if we want λd+1(C + Λ∗) > 0, we need to upperbound ‖A‖2.

‖A‖2 = ‖W − bd(WG∗) − bd(C0∆)‖2

≤ ‖W‖ + ‖bd(WG∗)‖ + ‖bd(C0∆)‖

≤ ‖W‖ + ‖WG∗‖ + ‖C0∆‖

≤ ‖W‖ (1 + ‖G∗‖) + ‖C0‖ ‖∆‖,

where we have used the results that ‖·‖2 ≤ ‖·‖, that ‖·‖ obeys triangle inequality, that
‖bd(·)‖ ≤ ‖·‖, and that ‖·‖ is sub-multiplicative [46]. We now need an upper bound on ‖∆‖,
which is the magnitude of perturbation in the optimum of C-SDP when the data matrix is
perturbed from C0 to C = C0 +W. We do this in Lemma 41, where we prove that

‖∆‖ ≤
2M

λd+1(C0)
‖W‖.

Thus, we have
‖A‖2 ≤ ‖W‖

(
1 + ‖G∗‖ + 2M

λd+1(C0)
‖C0‖

)
≤ ‖W‖

(
1 +M

√
d +

2M
λd+1(C0)

‖C0‖

)
,
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where, the fact that ‖G∗‖ ≤ M
√
d follows from Proposition 40(b). The terms in the paranthesis

are constant. Thus, by controlling ‖W‖, we can control ‖A‖2. In particular, if

‖W‖ < η =
λd+1(C0)(

1 +M
√
d + 2M

λd+1(C0)
‖C0‖

) ,
then λd+1(C0) − ‖A‖2 > 0. This, from equation (3.8), implies that λd+1(C + Λ∗) > 0. �

In the following subsections, we tie some loose ends in the proof above. In particular: (i)
we prove that C0G0 = 0; (ii) we justify the assumption made in the main theorem regarding
nullity of the clean data matrix, nullity(C0) = d ; (iii) we prove stability of C-SDP.

3.3.2 Clean Case

Suppose the local coordinate measurements are exact (noiseless). Let z̄1, · · · , z̄N be the ground-
truth global coordinates of the N points. Let the ground-truth rigid transform relating the
local coordinate system of patch Pi to the global coordinate system be (Ōi , t̄i), i ∈ [1 : M].
Since the local coordinate measurements are noiseless, the ground-truth global coordinates
and rigid transforms solve the rigid registration problem exactly. That is,

M∑
i=1

∑
k∈Pi

‖z̄k − (Ōixk,i + t̄i)‖2 = 0 = Tr
(
[C0]ijŌ>j Ōi

)
(3.9)

Recall that C0 is the clean data matrix. Also recall that we de�ned G0 by [G0]ij = Ō>i Ōj , for
i, j ∈ [1 : M]. Now, from (3.9) and the fact that the objective function in REG-SDP is the
exact reformulation of the objective function in ORTHO-REG, we get that Tr (C0G0) = 0.
Moreover, since C0 ∈ �

Md
+ , and trace of product of two positive semide�nite matrices is always

nonnegative, we have that Tr (C0G) ≥ 0 ∀ G ∈ �Md
+ . In particular, since any G feasible for

C-SDP is positive semide�nite, and Tr (C0G0) = 0, we have proved the following:

Proposition 39. G0 is global minimizer for C-SDP when the data matrix is clean.

Moreover, for arbitrary positive semide�nite matrices X and Y, the following holds:

Tr (XY) = 0 ⇐⇒ XY = 0.

This, along with the fact that Tr (C0G0) = 0 gives us

C0G0 = 0. (3.10)

Assumption on C0: Since rank(G0) = d , we deduce from (3.10) that nullity(C0) ≥ d . The
assumption we make on C0 is that nullity(C0) = d . This is equivalent to the condition that
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the body graph (de�ned in Chapter 2) corresponding to the registration problem is a�nely
rigid [14]. For example, this is true when each patch contains all the N points. More generally,
nullity(C0) = d when there exists an ordering of the patch indices such that P1 contains at
least d + 1 points, and Pi and P1 ∪ P2 ∪ · · · ∪ Pi−1 have at least d + 1 points in common for
i ≥ 2 [14] (this occurs naturally in applications like multiview registration [9]).

3.3.3 Stability of C-SDP

We now state a result that quanti�es stability of C-SDP. More speci�cally, Lemma 41 upper-
bounds the perturbation in global minimizer of C-SDP following a perturbation in the clean
data matrix C0.

Before stating and proving Lemma 41, we note some properties of positive semide�nite
matrices G with [G]ii = Id in Proposition 40; we defer the proof of this proposition to the
Appendix of this chapter.

Proposition 40. Suppose G ∈ �Md
+ and [G]ii = Id . Then

(a) rank(G) ≥ d ;

(b) σmax
(
[G]ij

)
≤ 1, i, j ∈ [1 : M];

(c) If rank(G) = d , then any nonzero eigenvalue of G isM .

Lemma 41. Suppose nullity(C0) = d . Let C be the corresponding noisy data matrix, and let
W = C − C0. Let G∗ be a global optimum for C-SDP corresponding to the noisy data C. Let
∆ = G∗ − G0, where G0 is the ground-truth solution. Then

‖∆‖ ≤
2M

λd+1(C0)
‖W‖.

Proof. Since rank(G0) = d we can write the spectral decomposition of the ground truth
solution as (see Proposition 40(c))

G0 =
d∑
i=1

Msis>i

where si , i ∈ [1 : d] are orthonormal. Similarly, we can write the optimal solution correspond-
ing to the perturbed data C as

G∗ =
Md∑
i=1

αigig>i

where gi , i ∈ [1 : d] are orthonormal.
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Let P be the orthoprojector on kernel(C0). Since C0G0 = 0, rank(G0) = d , and nullity(C0) = d ,
we deduce that

P =
d∑
i=1

sis>i =
1
M
G0.

Clearly, R = I − P is the orthoprojector on range(C0), and

gi = Pgi + Rgi .

Let hi := Rgi . As will be apparent, we want to lowerbound
〈
C0,G∗

〉
. Now,

〈
C0,G∗

〉
=

Md∑
i=1

αi
(
g>i C0gi

)
=

Md∑
i=1

αi
(
h>i C0hi

)
≥ λd+1(C0)

Md∑
i=1

αi ‖hi ‖2.

(3.11)

Thus, to get a lowerbound on
〈
C0,G∗

〉
, we just have to lowerbound

∑Md
i=1 αi ‖hi ‖

2. To do this,
we �rst reformulate ‖hi ‖2 as,

‖hi ‖2 = ‖Rgi ‖2

= g>i Rgi

= g>i (I − P)gi

= ‖gi ‖2 −
1
M

(
g>i G0gi

)
= 1 − 1

M

(
g>i G0gi

)
,

where the second equality holds because R2 = R, since R is an orthoprojector. Thus,

Md∑
i=1

αi ‖hi ‖2 =
Md∑
i=1

αi −
1
M

Md∑
i=1

αi
(
g>i G0gi

)
= Md −

1
M

〈
G0,G∗

〉
.

(3.12)

Now, to upperbound
〈
G0,G∗

〉
, we note that〈

G0,G∗
〉
=

1
2 ‖G0‖

2 +
1
2 ‖G

∗‖2 −
1
2 ‖∆‖

2

≤
1
2M

2d +
1
2M

2d −
1
2 ‖∆‖

2 = M2d −
1
2 ‖∆‖

2
(3.13)
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where, to get the �rst inequality, we use the fact that any singular value of [G∗]ij is at most 1
for every 1 ≤ i, j ≤ M (Proposition 40). Combining (3.12) and (3.13), we get

Md∑
i=1

αi ‖hi ‖2 ≥
1

2M ‖∆‖
2.

Plugging this in (3.11) gives us, 〈
C0,G∗

〉
≥
λd+1(C0)

2M ‖∆‖2.

Now,
−‖W‖ ‖∆‖ ≤

〈
W,∆

〉
=

(〈
C,G∗

〉
−

〈
C,G0

〉)
+

(〈
C0,G0

〉
−

〈
C0,G∗

〉)
≤ −

〈
C0,G∗

〉
where the �rst inequality is Cauchy-Schwarz (with inner product between two symmetric
matrices de�ned as the trace of their product), and the last inequality is due to the fact that
the term in �rst paranthesis is negative by optimality of G∗, and that the �rst term in second
paranthesis is 0. So,

‖W‖ ‖∆‖ ≥
〈
C0,G∗

〉
≥
λd+1(C0)

2M ‖∆‖2

which �nally gives us,
‖∆‖ ≤

2M
λd+1(C0)

‖W‖.

�

3.4 Discussion

In this chapter, we derived a rank-constrained semide�nite program REG-SDP that isolates
the computational di�culty of the rigid registration problem in the rank-constraint. We then
derived a convex relaxation C-SDP by dropping the rank-constraint from REG-SDP. The main
contribution of the chapter was to give a theoretical justi�cation of the empirically-observed
phenomenon that the relaxation remains tight when noise in the data is below a certain
threshold. Along the way, we proved a stability result for C-SDP. In the next chapter, we will
see how the tightness behavior of C-SDP sheds light on convergence behavior of an algorithm
that, instead of working with the relaxation C-SDP, directly attacks the rank-constrained
program REG-SDP.
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3.5 Appendix

3.5.1 Proof of Lemma 35

KKT conditions for the convex program C-SDP are just the conditions of primal feasibility, dual
feasibility, and complementary slackness [45]. Condition (a) is the primal feasibility condition,
condition (b) is the dual feasibility condition, and condition (c) is the complementary slackness
condition that follows from strong duality [47]. Now, to see why Λ∗ is block-diagonal, we
write C-SDP as a standard semide�nite program [47]

min
G

Tr(CG)

s.t. Tr(AkG) = bk , k = [1 : m],

G ∈ �Md
+ .

Here Ak ∈ �
Md , and Tr(AkG) = bk , k = [1 : m], collectively encode the condition that

[G]ii = Id . From [47], Λ∗ is of the form
∑m

k=1ykAk , for some scalars yk , and it is not di�cult to
see that

∑m
k=1ykAk forms a symmetric block-diagonal matrix in this case.

3.5.2 Proof of Proposition 36

Proposition 35 tells us that (C + Λ∗) G∗ = 0. That is,

Λ∗G∗ = −CG∗.

Proposition 35 also tells us that Λ∗ is a symmetric block-diagonal matrix, and that [G∗]ii = Id .
Using these facts, and comparing the diagonal blocks of the left-hand side and the right-hand
side, we get

[Λ∗]ii = −[CG∗]ii .

Thus,
Λ∗ = −bd(CG∗),

where, bd is the linear operator that leaves the diagonal blocks untouched and sets other
elements to 0.

3.5.3 Proof of Proposition 40

(a) Consider the �rst d columns of G. Since [G]11 = Id , we conclude that the �rst d columns
of G are linearly independent.

(b) Let xi , xj ∈ �d , ‖xi ‖ = ‖xj ‖ = 1 . Regard any vector in �Md as consisting of M vectors
in �d stacked vertically. Construct x ∈ �Md with i-th block as xi , j-th block as −xj , and
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every other block as 0. Then

x>Gx = ‖xi ‖2 + ‖xj ‖2 − 2x>i [G]ijxj ,

where we have used the fact that [G]ji = [G]>ij . Since G ∈ �Md
+ , we get that

‖xi ‖2 + ‖xj ‖2 − 2x>i [G]ijxj ≥ 0.

This gives us

x>i [G]ijxj ≤
‖xi ‖2 + ‖xj ‖2

2 = 1.

Similarly, by replacing −xj with xj in the j-th block of x, we get

x>i [G]ijxj ≥ −1.

Putting these together, we have ��x>i [G]ijxj �� ≤ 1.

Unit vectors xi , xj ∈ �Md were arbitrary, and thus, the result follows.

(c) Consider the spectral decomposition of G,

G =
d∑
i=1

αiviv>i

where αi > 0 are the non-zero eigenvalues, and vi are the corresponding orthonormal
eigenvectors. Let

B =
[√
α1v1 · · ·

√
αdvd

]>
.

Regard B as a block-row, where each element is of size d ×d . Notationally, B = [B1 · · ·BM ],
where Bi ∈ �

d×d . Thus,
[G]ij = B>i Bj .

In particular, since [G]ii = Id , we get that

B>i Bi = Id .

Now, suppose v1 = (v11, · · · , v1M ), where v1j ∈ �
d . Note that √α1v>1j forms the �rst row

of Bj . From orthogonality of Bj , we get that, for every j,

‖
√
α1v1j ‖

2 = 1.
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Or,
‖v1j ‖

2 =
1
α1
, j ∈ [1 : M].

Now, since ‖v1‖
2 = 1, we have

M∑
j=1
‖v1j ‖

2 = 1,

from where we get that α1 = M . Similarly, α2 = · · · = αd = M .



Chapter 4

Convergence of Nonconvex ADMM

4.1 Introduction

In the last chapter, we saw that the least-squares estimator LS-REG for the rigid registration
problem can be formulated as a rank-constrained semide�nite program REG-SDP, which can
then be relaxed into a convex semide�nite program C-SDP by dropping the rank-constraint.
When the relaxation C-SDP is not tight, we have to resort to some kind of “rounding” to
obtain a solution feasible for the rank-constrained program REG-SDP [14]. This motivates
the question: Could we come up with a theoretically-sound solver that directly attacks the
nonconvex problem REG-SDP?

In a recent work [9], it was shown that by formally applying the alternating direction
method of multipliers (ADMM), we can derive a computationally-e�cient iterative solver
REG-ADMM to solve REG-SDP. The solver was empirically shown to have robust performance
in the context of multiview registration. Unlike convex programs, convergence analysis of
ADMM for nonconvex programs is still in its infancy, and the existing handful of results cannot
be applied to derive theoretical convergence of REG-ADMM. In this chapter, we investigate
convergence properties of REG-ADMM and our main �ndings are as follows. We prove that
if the REG-ADMM iterates converge, they do so to a stationary (KKT) point of REG-SDP.
Moreover, for clean measurements, we give an explicit formula for ρ, for which REG-ADMM
is guaranteed to converge to the global optimum (with arbitrary initializations). If the noise
is low, we can still show that the iterates converge to the global optimum, provided they
are initialized su�ciently close to the optimum. On the other hand, if the noise is high, we
point out that the iterates can oscillate if ρ is less than some threshold, irrespective of the
initialization. We present simulation results to support our theoretical predictions.

4.1.1 Alternating Direction Method of Multipliers

We start with a brief overview of the alternating direction method of multipliers (ADMM). A
more detailed exposition can be found in [18]. ADMM is an iterative method which can be

47
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applied to solve a convex program of the following form:

(CVX)
min

x ∈ P, z ∈ Q
f (x) + д(z)

subject to Ax + Bz − c = 0,

where, P and Q are closed, convex sets in �n and �m; f and д are closed, proper, convex
functions; A ∈ �p×n, B ∈ �p×m and c ∈ �p . For a �xed ρ > 0, de�ne the augmented Lagrangian
function [18] for CVX as

Lρ(x, z,λ) = f (x) + д(z) +
〈
λ,Ax + Bz − c

〉
+
ρ

2 ‖Ax + Bz − c‖
2, (4.1)

where, λ ∈ �p is the Lagrange multiplier (a.k.a. dual variable) corresponding to the equality
constraint,

〈
·, ·

〉
denotes the Euclidean inner product, and ‖·‖ denotes the Euclidean vector

norm. The ADMM algorithm, initialized with (z0,λ0), performs the following updates for
k ≥ 0:

xk+1 = argmin
x ∈ P

Lρ(x, zk ,λk);

zk+1 = argmin
z ∈ Q

Lρ(xk+1, z,λk);

λk+1 = λk + ρ (Ax + Bz − c).

(4.2)

This algorithm is especially relevant when the subproblems involving minimization of the
augmented Lagrangian with respect to a primal variable (while keeping the other variables
�xed) have a simple closed-form solution. The ADMM algorithm can be shown to converge
to global optimum of the convex program CVX under very mild assumptions [18].

4.1.2 ADMM for Rigid Registration

We now derive the ADMM-based algorithm proposed in [9] to solve the following problem:

(REG-SDP)

min
G∈�Md

+

Tr (CG)

subject to [G]ii = Id , i ∈ [1 : M],

rank(G) = d .

In its original formulation, it is not clear how to use ADMM to solve REG-SDP. To remedy
this, we “split” the variable G and express REG-SDP as:

min
G,H∈�Md

Tr(CG)

subject to G ∈ Ω, H ∈ Θ,

G − H = 0.

(4.3)



4.1. Introduction 49

Here, Ω denotes the (closed, nonconvex) set of positive semide�nite matrices whose rank is at
most d , and Θ denotes the (closed, convex) set of symmetric matrices whose d × d diagonal
blocks are Id . Notationally, Ω = {X ∈ �Md

+ : rank(X) ≤ d}, and Θ = {X ∈ �Md : [X]ii = Id}.
The equivalence of this reformulation to REG-SDP follows from the fact that the rank of any
H ∈ Θ is at least d , since its diagonal blocks are Id . On the other hand, any G ∈ Ω has rank
at most d . Thus, if H = G, the rank of G (and H) would have to be d . The reason we de�ne
Ω to contain matrices of rank at most d rather than matrices of rank exactly d is to ensure
that Ω is a closed set; as will become clear, closedness of Ω is needed to ensure existence of
(Euclidean) projection on Ω (see equation (4.5)). The splitting of the constraint into Ω and Θ,
with an additional linear (consensus) constraint, makes the problem algorithmically amenable
to ADMM. For some �xed ρ > 0, the augmented Lagrangian for (4.3) is

Lρ(G,H,Λ) = Tr (CG) + Tr(Λ(G − H)) + ρ2 ‖G − H‖
2, (4.4)

where the symmetric matrix Λ ∈ �Md×Md is the dual variable for the constraint G − H = 0,
and ‖·‖ denotes the matrix Frobenius norm. The ADMM algorithm in [9], initialized with
some H0 and Λ0, involves the following updates for k ≥ 0:

(REG-ADMM)

Gk+1 = argmin
G∈Ω

Lρ

(
G,Hk ,Λk

)
;

Hk+1 = argmin
H∈Θ

Lρ

(
Gk+1,H,Λk

)
;

Λk+1 = Λk + ρ
(
Gk+1 − Hk+1

)
.

As observed in [9], the �rst two sub-problems can be expressed as matrix projections onto Θ

and Ω respectively. Namely,

Gk+1 = ΠΩ

(
Hk − ρ−1

(
C + Λk

))
,

Hk+1 = ΠΘ

(
Gk + ρ−1Λk

)
,

(4.5)

where ΠΩ(·) and ΠΘ(·) denotes Euclidean projection 1 onto Ω and Θ. The former can be
computed simply by setting the diagonal blocks of the input matrix to Id . On the other hand,
the latter can be computed e�ciently by computing its top d eigenvalues and retaining the
ones that are positive [48]. More precisely, if A has a spectral decomposition A = µ1u1u>1 +

1 Euclidean projection ΠΓ(A) of a matrix A ∈ �n on a set Γ ⊂ �n is de�ned as

ΠΓ(A) = argmin
X∈Γ

‖X − A‖2
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· · · + µMduMdu>Md
, where µ1 ≥ · · · ≥ µMd , then

ΠΩ(A) =
d∑
i=1

max(µi , 0) uiu>i .

Note that even though nonconvexity of Ω places REG-ADMM outside the scope of the results
on standard ADMM, we empirically �nd that it has good convergence properties. It was
shown in [9] that the performance of REG-ADMM is comparable to state-of-the-art methods
for the registration of three-dimensional multiview scans. In fact, this is consistent with recent
works where the empirical success of ADMM for nonconvex problems have been reported
[19, 20, 21]. Our goal in this chapter is to study theoretical convergence of REG-ADMM.
For some of our results, we will be leveraging convergence properties of a closely related
ADMM that solves the following convex relaxation of REG-SDP obtained by dropping the
rank-constraint:

(C-SDP)
min
G∈�Md

+

Tr(CG)

subject to [G]ii = Id , i ∈ [1 : M].

An ADMM algorithm to solve C-SDP was proposed in [49]. Initialized with some H0 and Λ0,
this involves the following updates for k ≥ 0:

(C-ADMM)

Gk+1 = argmin
G∈�Md

+

Lρ

(
G,Hk ,Λk

)
;

Hk+1 = argmin
H∈Θ

Lρ

(
Gk+1,H,Λk

)
;

Λk+1 = Λk + ρ
(
Gk+1 − Hk+1

)
.

The expression for the augmented Lagrangian Lρ in C-ADMM is identical to that in (4.4). Note
that C-ADMM is similar to REG-ADMM, with the only di�erence being in the G-update step.
Namely, the minimization is over the nonconvex set Ω in REG-SDP, while it is over the closed
convex set �Md

+ in C-SDP. This di�erence turns out to be crucial for convergence: C-ADMM
converges to global optimum of C-SDP for any ρ > 0, and with arbitrary initialization [49].

While C-ADMM enjoys strong convergence guarantees, it has typical drawbacks of a
convex relaxation. First, the rank of the global optimum of C-SDP is not guaranteed to be
d , i.e., it might not even be feasible for REG-SDP. If the rank is greater than d , we have to
“round” the solution of C-SDP to a rank-d matrix [14], which will generally be suboptimal for
REG-SDP. Second, because the G-update requires us to optimize over the entire PSD cone
�Md
+ , C-ADMM requires full eigendecomposition of an Md ×Md matrix at every iteration [49].

On the other hand, REG-ADMM directly attacks the nonconvex problem REG-SDP, and thus



4.1. Introduction 51

C-ADMM REG-ADMM

Gk+1 = Π
�Md
+

(
Hk − 1

ρ

(
C + Λk

))
Gk+1 = ΠΩ

(
Hk − 1

ρ

(
C + Λk

))
Compute Md eigenvalues Compute top d eigenvalues

(Md ∼ thousands) (d ∼ 2, 3)
Converges to global minimum for any

ρ > 0, with any initialization
Convergence behavior dependent on data

noise, initialization, ρ (see Fig. 4.1)

Table 4.1: Table comparing C-ADMM (for solving C-SDP) and REG-ADMM (for solving REG-
SDP). The only di�erence in the algorithms is the G-update step, as observed in the �rst
row of the table. The second row notes the saving in computation that results from using
REG-ADMM to address the unrelaxed problem directly. The third row notes the contrast in
the convergence behavior.

obviates the need for any rounding. Moreover, REG-ADMM requires computation of only the
top d eigenvectors at each iteration. But these bene�ts come at a cost—it is usually di�cult to
derive theoretical guarantees for nonconvex optimization. As far as we know, convergence
guarantees for REG-ADMM do not follow from existing results on nonconvex ADMM (see
the discussion in Section 4.1.5 for further details).

4.1.3 Numerical Experiments

To understand the challenges involved in the convergence analysis of REG-ADMM, we look
at some simulation results for the sensor network localization problem. We consider a two-
dimensional network with ten nodes. There are three patches, where each patch contains all
the ten nodes. The local coordinate system for each patch is obtained by arbitrarily rotating the
global coordinate system. Moreover, we perturb the local coordinates using iid Gaussian noise.
Our goal is to estimate the patch rotations up to a global transform. We set up REG-SDP for
this problem and solve it using REG-ADMM. Figure 4.1 shows the dependence of REG-ADMM
on ρ at di�erent noise levels, where by “noise level” we mean the variance of the Gaussian
noise. Notice that even when the local coordinates measurements are clean, REG-ADMM
may get stuck in a local minimum depending on ρ. This dependence of the limit point on
ρ is observed both at low and high noise levels. This is in contrast with C-ADMM, where
the iterates converge to a global minimum for any positive ρ [49]. Also observe that when
the noise is relatively large (Fig. 4.1c), the iterates of the algorithm may oscillate without
converging if ρ is small. Such non-attenuating oscillations are not observed when the noise is
low (see Figure 4.1b).

4.1.4 Contribution

The foregoing simulation results provide the main motivation for our investigations, namely,
we wish to theoretically justify the observed behavior of REG-ADMM at di�erent noise
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(a) Even with clean measurements, the iterates get stuck in a local minimum when
ρ = 1 (the optimum value is zero in this case).
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(b) There are no oscillations for small ρ when the noise is low.
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(c) The iterates oscillate for small ρ when the noise is high.

Figure 4.1: Simulation results at di�erent noise levels (see the main text for a description of
the experiment).
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regimes. We �rst clarify what we mean by “noise”. As mentioned previously, the information
about pairwise relations among the M orthogonal transforms are encoded by the matrix C,
which ultimately depends on the local coordinates xk,i . If these measurements are exact, we
say that C is clean; otherwise, we say that C is noisy. Furthermore, we make a distinction
between low and high noise. In this context, we bring in the notion of tightness of the convex
relaxation C-SDP. Recall that C-SDP is derived by dropping the rank constraint. Let G∗ denote
a global optimum of C-SDP. If rank(G∗) = d , then clearly G∗ is global optimum of REG-SDP
as well, meaning that we have solved the original nonconvex problem. In this case, we say
that the relaxation is tight [1]. In Chapter 3, we showed existence of a noise threshold, below
which C-SDP remains tight. If the noise level in the data matrix C is below (resp. above) this
threshold, we say that the noise is low (resp. high). An informal account of our main �ndings
is as follows:

1. For any arbitrary data matrix C, we prove that if the REG-ADMM iterates are asymptot-
ically feasible and the dual iterates remain bounded, then any limit point of the iterates
is a stationary (KKT) point of ORTHO-REG.

2. At low noise, we show that the REG-ADMM iterates converge to the global optimum,
provided they are initialized su�ciently close to the optimum.

3. Recall that even when the data matrix is clean, REG-ADMM might get stuck in a local
optimum (Figure 1.6a). If the data matrix is clean, then, for arbitrary initialization,
we compute ρ for which REG-ADMM converges to the global optimum of REG-SDP
(Corollary 47).

4. At high noise, we give a duality-based explanation of why the iterates exhibit non-
attenuating oscillations when ρ is small, and why no such oscillations are observed at
low noise. This suggests that for highly noisy measurements, ρ should not be set to a
very small value.

The novelty of our analysis lies in the fact that we exploit the phenomenon of tightness of
convex relaxation to prove convergence of the nonconvex ADMM. We contrast this approach
with existing works on nonconvex ADMM (which rely on assumptions that do not apply to
REG-ADMM) in the following subsection (Section 4.1.5).

4.1.5 Related Work

The rank-restricted subset Ω of the PSD cone is nonconvex, which implies that standard
convergence result for ADMM [18] does not directly apply to REG-ADMM. However, we do
leverage the convergence of convex ADMM for analyzing the convergence of REG-ADMM
when the noise is low. The theoretical convergence of ADMM for nonconvex problems has
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been studied in [50, 51, 52]. However, a crucial working assumption common to these results
does not hold in our case. More precisely, observe that we can rewrite REG-SDP as

min
G,H∈�Md

Tr(CG) + ιΩ(G) + ιΘ(H)

subject to G − H = 0,
(4.6)

where ιΓ is the indicator function associated with a feasible set Γ [18], namely, ιΓ(Y) = 0
if Y ∈ Γ, and ιΓ(Y) = ∞ otherwise. Notice that, because of the indicator functions, the
objective function in (4.6) is non-di�erentiable in both G and H. This violates a regularity
assumption common in existing analyses of nonconvex ADMM, namely, that the objective
must be di�erentiable in at least one variable. In these works, convergence results are obtained
by proving a monotonic decrease in the augmented Lagrangian. This involves: (i) bounding
successive di�erence in dual variables by successive di�erence in primal variables, which is
where the assumption of smoothness is used; (ii) requiring that the parameter ρ is above a
certain threshold. In particular, it is not clear whether this thresholding of the value of ρ is
fundamental to convergence, or just an artifact of the analysis.

We do not make such smoothness assumptions in our analysis. We can a�ord to do this
since we are analyzing a special class of problems, as opposed to the more general setups
in [50, 51, 52]. Instead of showing a monotonic decrease in the augmented Lagrangian, our
analysis relies on the phenomenon of tightness of convex relaxation. This provides more
insights into the convergence behavior of the algorithm. For instance, our explanation in
Section 4.2.4 shows that the instability of the algorithm (in the high-noise regime) for low
values of ρ is fundamental, while suggesting why this instability is not observed in the
low-noise regime.

4.1.6 Organization

This chapter is organized as follows. In Section 4.2, we state the main results. This section is
divided into four subsections dealing with duality, general convergence result, convergence
in low-noise regime (which includes, as a special case, convergence when the data matrix
is clean), and oscillations in high-noise regime. We give proofs of the results of this section
in Section 4.3, before concluding with a discussion in Section 4.4. The chapter ends with an
Appendix containing a proof of an auxiliary result used in Section 4.3.

4.1.7 Notations

The notations used in this chapter are as mentioned in Chapter 3, Section 3.1.2.



4.2. Convergence Analysis 55

4.2 Convergence Analysis

In this section we state and discuss the main results of the chapter. To improve readability,
the technical proofs are deferred to section 4.3.

4.2.1 Duality

We start by discussing some results on Lagrange duality, which plays an important role
throughout our analysis. To obtain stationarity conditions that optimum orthogonal trans-
forms for the rigid registration problem must satisfy, we work with an equivalent formulation
of REG-ADMM. Recall, from Section 3.2 in Chapter 3, that REG-ADMM is just a reformulation
of the following optimization problem:

(ORTHO-REG) min
O1,...,OM∈�(d)

M∑
i,j=1

Tr
(
CijO>j Oi

)
.

To derive KKT conditions for ORTHO-REG we write it as a standard nonlinear program [53]:

min
O1,··· ,OM∈�d×d

M∑
i,j=1

Tr
(
[C]ijO>j Oi

)
subject to Id − O>i Oi = 0, i ∈ [1 : M].

(4.7)

It is not di�cult to check that the gradients of the constraints in (4.7) are linearly independent.
As a result, the KKT conditions necessarily hold at any local minimum of (4.7) [53]. The
Lagrangian [53] for (4.7) is

L(O1, · · · ,OM ,Λ1, · · · ,ΛM ) =

M∑
i,j=1

Tr
(
[C]ijO>j Oi

)
+

M∑
i=1

Tr(Λk
(
Id − O>i Oi)

)
, (4.8)

where the symmetric matrix Λi ∈ �
d is the Lagrange multiplier for the i-th equality constraint

in (4.7), i ∈ [1 : M]. The following lemma characterizes any KKT point of ORTHO-REG.

Lemma 42. The variables O∗1, . . . ,O
∗
M ∈ �

d×d constitute a KKT point of ORTHO-REG if and
only if, for i ∈ [1 : M],

(a) [G∗]ii = Id , and

(b) [CG∗]ii = [G∗C]ii ,

where G∗ is the Gram matrix of (O∗i )
M
i=1, whose (i, j)-th block is [G∗]ij = O∗>i O∗j . In this case, we

say that G∗ is a KKT point of ORTHO-REG.

We now consider the dual variables generated by C-ADMM and REG-ADMM. For both
these algorithms, we will assume that the dual initialization Λ0 ∈ �Md is block-diagonal.
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Proposition 43. Let the dual initialization Λ0 ∈ �Md for REG-ADMM (or C-ADMM) be
block-diagonal. Then

(i) Λk is block-diagonal at every k ≥ 1;

(ii) The H-update step in (4.5) reduces to

Hk+1 = ΠΘ

(
Gk+1

)
. (4.9)

4.2.2 General Convergence Result

We now state some convergence results wherein we do not assume anything about the data
matrix C. Lemma 44 essentially says that any �xed point of REG-ADMM is a KKT point of
ORTHO-REG. Theorem 45 establishes convergence for REG-ADMM under some assumptions
that empirically seem to hold if ρ is not too small.

Lemma 44. Let {Gk ,Hk ,Λk}∞
k=1 be the iterates generated by REG-ADMM. Suppose there exists

a subsequence {Hkl }∞
l=1 ⊂ {H

k}∞
k=1 such that ‖Gkl+1 − Hkl ‖ → 0, and Hkl → H∗ as l → ∞.

Then H∗ is a KKT point of ORTHO-REG.

Lemma 44 implies that if REG-ADMM converges, it does so to a KKT point of ORTHO-REG.
By convergence of REG-ADMM, we mean that the algorithm “stabilizes”; that is, asymptotically,
the variables stop getting updated. Thus, if REG-ADMM converges, we have ‖Gk+1−Hk ‖ → 0
as k →∞, and this implies convergence to a KKT point by Lemma 44. We now state a result
saying that if REG-ADMM generates primal iterates that are asymptotically feasible, and if
the dual iterates remain bounded, then there is a subsequence that converges to a KKT point
of ORTHO-REG.

Theorem 45. Suppose the following conditions hold for the iterates generated by REG-ADMM:

A1. ‖Gk − Hk ‖ → 0 as k →∞ (asymptotic feasibility).

A2. The dual iterates {Λk}∞
k=0 are bounded.

Then there exists a subsequence {Hkl }∞
l=1 that converges to a KKT point of ORTHO-REG.

For su�ciently large ρ, we empirically �nd that A1 and A2 do indeed hold. The requirement
that ρ be su�ciently large is in line with other results on nonconvex ADMM [21, 51]. One
way to justify our assumption about ρ is that, since ρ acts like a penalty parameter in (4.4), the
algorithm has more “incentive” to push ‖Gk − Hk ‖ to 0 if ρ is large, thus leading to feasibility.
Moreover, if this decay to 0 is fast enough, we will have

∑∞
k=1‖G

k − Hk ‖ < ∞, implying that
Λk remains bounded.
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4.2.3 Convergence in Low-Noise Regime

When noise in the data matrix is low enough for the convex relaxation C-SDP to be tight, we
say that we are in the low-noise regime. Theorem 38 in Chapter 3 establishes the validity of this
notion; that is, we do have a non-zero noise level, η > 0, below which C-SDP is tight. Recall
that we use C0 to denote the clean data matrix, and C = C0 +W to denote the noisy data
matrix; that is, W is the perturbation to the clean data matrix due to noisy local coordinate
measurements. We now state our result on convergence of REG-ADMM in the low-noise
regime.

Theorem 46. Let C0,W be as in Theorem 38. Suppose ‖W‖ < η, which implies that the convex
relaxation is tight, i.e., rank(G∗) = d , where G∗ is a global optimum for C-SDP. Let Λ∗ be the
dual variable corresponding to G∗ (see Lemma 35). Suppose H0, Λ0, ρ are such that

‖H0 − G∗‖2 +
1
ρ2 ‖Λ

0 − Λ∗‖2 ≤
1
ρ2 λ

2
d+1(C + Λ

∗). (4.10)

Then REG-ADMM converges to the global optimum, that is, Hk → G∗ and Λk → Λ∗ as k →∞.

While proving Theorem 46 in Section 4.3.3, we will see that when the conditions in Theorem
46 are satis�ed, REG-ADMM and C-ADMM generate identical iterates. This allows us to infer
the convergence of REG-ADMM from that of C-ADMM. Thus, we reap the convergence
bene�ts of C-ADMM, while retaining the computational advantages of REG-ADMM (see Table
4.1).

Observe that Theorem 46 implies a tradeo�, namely, if we intialize the dual su�ciently
close to the optimal, we can be lax with the primal initialization. This principle is brought to
the fore in the clean case, where we know that the dual optimum Λ∗ = 0 (this is because, in
the clean case, G0 is the primal global optimum, and C0G0 = 0; see (3.10) and Proposition 36).

Corollary 47. Let nullity(C0) = d and Λ0 = 0. Then given any primal initialization H0,
REG-ADMM converges to global optimum provided

ρ ≤
λd+1(C0)√

‖H0‖2 + 2M
√
d ‖H0‖ +M2d

.

In Fig. 4.1a, REG-ADMM gets stuck in a local optimum for ρ = 1, but converges to the
global optimum if ρ is set using Corollary 47. The result also sheds light on the robustness of
the algorithm to primal initializations, as observed in [9]. Note that we have an upper bound
on ρ, in contrast to existing results in the literature which prescribe a lower bound. This
phenomenon is peculiar to low-noise data. In contrast, small values of ρ in the high-noise
regime may lead to non-attenuating oscillations (Fig. 4.1c).
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4.2.4 Oscillations in High-Noise Regime

Before discussing oscillations in the high-noise regime, we will derive a necessary condition
that a �xed-point of REG-ADMM must satisfy. We �rst clarify what we mean by a “�xed-point”.

De�nition 48. Suppose T is an iterative procedure initialized with z0, and working as follows:
zk+1 = T(zk). Then zk0 is a �xed point of T if zk0 = T(zk0).

Suppose (H∗,Λ∗) is a �xed-point of REG-ADMM with parameter ρ. Then, if we were to
initialize REG-ADMM with H0 = H∗, Λ0 = Λ∗, we would have H1 = H0 (= H∗), Λ1 = Λ0 (= Λ∗).
In other words, the algorithm would make no progress. The following proposition speci�es a
condition involving H∗ and Λ∗ that must necessarily hold in this case.

Proposition 49. Suppose (H∗,Λ∗) is a �xed-point of REG-ADMM algorithm with parameter ρ.
Then (C + Λ∗)H∗ = 0.

Let us now focus on the high-noise regime. Suppose REG-ADMM is initialized with
(H0,Λ0) such that H0 is feasible for REG-SDP, Λ0 is block-diagonal, and (C+Λ0)H0 = 0. In the
high-noise regime (i.e., when the convex relaxation is not tight), C+Λ0 must have at least one
negative eigenvalue (say −µ2). Indeed, if C + Λ0 were positive semide�nite, it would follow
from Lemma 35 that the convex relaxation is tight. Now, the G-update is

G1 = ΠΩ
(
H0 − ρ−1(C + Λ0)

)
.

From Proposition 40, we know that the d non-zero eigenvalues of H0 are M . Now, observe
that −ρ−1(C + Λ0) has a positive eigenvalue ρ−1µ2. If ρ is su�ciently small, we would have
ρ−1µ2 > M . Then, since G1 is determined by the top d eigenvalues of H0 − ρ−1(C + Λ0), we
would have that the top eigenvalue of G1 is strictly bigger than M , making G1 infeasible for
REG-SDP (since, by Proposition 40, any G feasible for REG-SDP necessarily has all non-zero
eigenvalues equal to M). This would imply that H1 , G1, and consequently, that Λ1 , Λ0.
That is, for small value of ρ, we see that REG-ADMM does not stabilize even when H0 and Λ0

satisfy (C + Λ0)H0 = 0, a property that any candidate for a �xed-point of REG-ADMM must
satisfy. Put di�erently, there can be no �xed-point to which REG-ADMM converges if ρ is
su�ciently small.

Observe that the argument above depended on the existence of a negative eigenvalue of
C + Λ0. This argument does not hold in the low-noise regime because we can simultaneously
have the properties that (C+Λ0)H0 = 0, and that all the eigenvalues of C+Λ0 are nonnegative
(which holds when H0 is global optimum; see condition (b) in Lemma 35). This suggests why
the instability is not observed for low values of ρ in the low-noise regime.
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4.3 Technical Proofs

In this section, we give proofs of the results stated in Section 4.2. The subsections here are
given the same title as subsections in Section 4.2 to facilitate the correspondence between the
results and the proofs.

4.3.1 Duality

Proof of Lemma 42. For a minimization problem with equality constraints, KKT conditions
amount to primal feasibility, and stationarity of Lagrangian (4.8) with respect to the primal
variables [53] (i.e., the partial derivative of (4.8) with respect to Oi should vanish). Primal
feasibility gives us condition (a). Vanishing of partial derivative of (4.8) with respect to Oi

gives us

O∗i Λ
∗
i = −

M∑
j=1

O∗j [C]ji , i ∈ [1 : M]. (4.11)

Left multiplying by O∗>i and using the primal feasibility condition that O∗>i O∗i = Id , we obtain

Λ∗i = −
M∑
j=1

O∗>i O∗j [C]ji = −
M∑
j=1
[G∗]ij[C]ji = −[G∗C]ii .

Also, note that Λ∗>i = −[CG∗]ii . Since Λ∗i is symmetric, condition (b) follows immediately.
Conversely, given conditions (a) and (b) on G∗, it is not di�cult to see that Λi ’s de�ned as
Λi = −[CG∗]ii , and Oi ’s de�ned such that O>j Ok = [G∗]jk ∀j,k ∈ [1 : M], together satisfy the
KKT conditions. �

Proof of Proposition 43. We prove the proposition for REG-ADMM by induction. The proof
for C-ADMM is exactly the same since the H-update and Λ-update steps are identical for REG-
ADMM and C-ADMM. Clearly, the proposition holds for k = 0. Assume that the proposition
holds for k = k0. We will show that it then has to hold for k = k0 + 1. Consider the H-update
step in (4.5)

Hk0+1 = ΠΘ

(
Gk0+1 + ρ−1Λk0

)
.

We know that Θ is the set of symmeteric matrices for which d × d diagonal blocks are Id . It is
clear that projection of a matrix on Θ is obtained by setting the diagonal blocks of the matrix
to Id . In other words, ΠΘ(·) a�ects only the diagonal blocks of its argument. By induction
hypothesis, Λk0 is block-diagonal, and thus adding it to Gk

0 in the H-update step does not a�ect
the projection on Θ, or,

Hk0+1 = ΠΘ

(
Gk0+1

)
.
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Now, consider the Λ-update step,

Λk0+1 = Λk0 + ρ
(
Gk0+1 − Hk0+1

)
.

Since ΠΘ(·) a�ects only the diagonal blocks of its arguments, it is clear that the o�-diagonal
blocks of Hk0+1 and Gk0+1 are the same. Thus, Gk0+1 −Hk0+1 is a block-diagonal matrix, which
along with the hypothesis that Λk0 is block-diagonal, implies that Λk0+1 is block-diagonal. �

4.3.2 General Convergence Result

Proof of Lemma 44. SinceGkl+1 is formed from top-d eigendecomposition ofHkl−ρ−1
(
C + Λkl

)
(see (4.5)), the range space of

(
Hkl − ρ−1

(
C + Λkl

)
− Gkl+1

)
is orthogonal to range space of

Gkl+1, which gives us (
Hkl − ρ−1

(
C + Λkl

)
− Gkl+1

)
Gkl+1 = 0. (4.12)

Or, (
Hkl − Gkl+1

)
Gkl+1 = ρ−1

(
C + Λkl

)
Gkl+1.

By hypothesis, the left hand side of the equation above goes to 0 as l →∞. Thus,(
C + Λkl

)
Gkl+1 → 0 as l →∞. (4.13)

Now, ‖Gkl+1 −Hkl ‖ → 0, which, together with (4.13) (and from continuity of linear operators)
implies that, as l →∞, (

C + Λkl
)
Hkl → 0

⇒ CHkl → −ΛklHkl

⇒ [CHkl ]ii → −[Λ
klHkl ]ii .

Note that [ΛklHkl ]ii is symmetric (since Λkl is block-diagonal, and [Hkl ]ii = Id ). Thus, we have
that [CHkl ]ii is closer and closer to being symmetric. That is, as l →∞,

dist
(
[CHkl ]ii ,�

d
)
→ 0 ∀ i ∈ [1 : M],

where ‘dist’ stands for distance. Now, by continuity of linear operator C,

[CHkl ]ii → [CH∗]ii .

Thus,
dist

(
[CH∗]ii ,�d

)
= 0.
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Since �d ⊂ �d×d is a closed set, this means that [CH∗]ii is symmetric. By Lemma 42, we have
our result. �

Proof of Theorem 45. Because Gk+1 minimizes Lρ(G,Hk ,Λk) over Ω,

Lρ(Gk ,Hk ,Λk) − Lρ(Gk+1,Hk ,Λk) ≥ 0.

Similarly, because Hk+1 minimizes Lρ(Gk+1,H,Λk) over Θ,

Lρ(Gk+1,Hk ,Λk) − Lρ(Gk+1,Hk+1,Λk) ≥ 0. (4.14)

In fact, we can say more for the H-update. We have

Lρ(Gk+1,Hk ,Λk) − Lρ(Gk+1,Hk+1,Λk)

= Tr(Λk(Hk − Hk+1)) +
ρ

2 ‖G
k+1 − Hk ‖2 −

ρ

2 ‖G
k+1 − Hk+1‖2

(4.15)

Now, Tr(Λk(Hk−Hk+1)) = 0 becauseΛk is block-diagonal and the diagonal blocks of (Hk−Hk+1)

are 0. Thus,
Lρ(Gk+1,Hk ,Λk) − Lρ(Gk+1,Hk+1,Λk)

=
ρ

2 ‖G
k+1 − Hk ‖2 −

ρ

2 ‖G
k+1 − Hk+1‖2

=
ρ

2 ‖H
k+1 − Hk ‖2

(4.16)

where the last equality is by Pythagoras theorem, since Θ is an a�ne space. So, we have
seen that the Lagrangian decreases during the G-update and H-update steps, and that we can
quantify the decrease during the H-update step. Consider now the Λ-update step,

Lρ(Gk+1,Hk+1,Λk) − Lρ(Gk+1,Hk+1,Λk+1)

= −ρ‖Gk+1 − Hk+1‖2.
(4.17)

This means that the Lagrangian increases during the Λ-update step. So,

Lρ(Gk ,Hk ,Λk) − Lρ(Gk+1,Hk+1,Λk+1)

= Lρ(Gk ,Hk ,Λk) − Lρ(Gk+1,Hk ,Λk) + Lρ(Gk+1,Hk ,Λk) − Lρ(Gk+1,Hk+1,Λk)

+ Lρ(Gk+1,Hk+1,Λk) − Lρ(Gk+1,Hk+1,Λk+1)

≥
ρ

2

(
‖Hk+1 − Hk ‖2 − 2‖Gk+1 − Hk+1‖2

)
,

(4.18)

where the inequality results from equations (4.14), (4.16), and (4.17).
Let {Gk ,Hk ,Λk}∞

k=1 be the iterates generated by the algorithm. Then for a �xed ϵ0 > 0, they
will satisfy one of the following mutually exclusive cases:
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Case 1: ‖Hk+1 − Hk ‖ ≤ (2 + ϵ0) ‖Gk+1 − Hk+1‖ in�nitely often.

Case 2: ‖Hk+1 − Hk ‖ ≤ (2 + ϵ0) ‖Gk+1 − Hk+1‖ �nitely often.

Suppose Case 1 holds. Choose a subsequence
(
Hkj ,Hkj+1)∞

j=1 such that

‖Hkj+1 − Hkj ‖ ≤ (2 + ϵ0) ‖Gkj+1 − Hkj+1‖. (4.19)

Now, from Assumption A1,

‖Gkj+1 − Hkj+1‖ → 0 as j →∞. (4.20)

This, from (4.19), implies that

‖Hkj+1 − Hkj ‖ → 0 as j →∞. (4.21)

Equations (4.20) and (4.21), together with Pythagoras theorem (since Θ is an a�ne space)
imply that

‖Gkj+1 − Hkj ‖ → 0 as j →∞.

Now, {Hkj }∞j=1 is bounded, because the algorithm tends to feasibility, and the feasible set
Ω ∩ Θ is bounded. Thus, we can choose a convergent subsequence {Hkl }∞

l=1 ⊂ {H
kj }∞j=1. Let

Hkl → H∗ as l →∞. By Lemma 44, H∗ is a KKT point.
Suppose Case 2 holds. Then there exists a K0 such that

‖Hk+1 − Hk ‖ > (2 + ϵ0)‖Gk+1 − Hk+1‖ ∀ k ≥ K0.

Thus, from (4.18), we get that

Lρ(Gk ,Hk ,Λk) − Lρ(Gk+1,Hk+1,Λk+1) >
ρ

2ϵ0 ‖Gk+1 − Hk ‖2 ∀ k ≥ K0. (4.22)

This means that the Lagrangian decreases monotonically for k ≥ K0. Now,
〈
C,Gk

〉
≥ 0 ∀ k ,

because C,Gk ∈ �Md
+ . Also, ρ2 ‖G

k −Hk ‖2 ≥ 0. Thus, using expression (4.4) for the Lagrangian,
we get

Lρ(Gk ,Hk ,Λk) ≥
〈
Λk ,Gk − Hk

〉
≥ −‖Λk ‖ ‖Gk − Hk ‖

where the second inequality is Cauchy-Schwarz. It now follows from Assumptions A1 and A2
that the Lagrangian is lower bounded. So, we have established that the Lagrangian decreases
(strictly) monotonically, and is lower bounded. Thus, from (4.22), ‖Gk+1−Hk ‖2 → 0 as k →∞.
Existence of convergent subsequence converging to a KKT point now follows as in Case 1. �
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4.3.3 Convergence in Low-Noise Regime

We start with a result on C-ADMM, which we will leverage to get results for REG-ADMM in
the low-noise regime. Suppose Ak = Hk − ρ−1(C + Λk), A∗ = H∗ − ρ−1(C + Λ∗), where H∗ is a
global minimum for the convex relaxation C-SDP, and Λ∗ is the corresponding optimal dual
as in Lemma 35.

Lemma 50. For C-ADMM, ‖Ak+1 − A∗‖2 ≤ ‖Ak − A∗‖2, for every k .

We are now ready to prove results on convergence of REG-ADMM in the low-noise regime.

Proof of Theorem 46. Since ‖W‖ < η, we have that nullity(C + Λ∗) = d (see proof of Theorem
38), which, in particular implies that λd+1(C + Λ∗) > 0. Recall that, according to our notation,
λd+1(C + Λ∗) is the (d + 1)-th eigenvalue of C + Λ∗, where we assume the eigenvalues to be
arranged in an ascending order. We now deduce the eigenvalues of A∗. From KKT condition
(a) in Lemma 35, we have that

(C + Λ∗) G∗ = 0.

In particular, this means that C + Λ∗ and G∗ are simultaneously diagonalizable, and since
their product is 0, their range spaces are orthogonal. Now, since rank(G∗) = d , the non-zero
eigenvalues of G∗ are all M (Proposition 40). Moreover, from KKT condition (b) in Lemma 35,
we have that C + Λ∗ ∈ �Md

+ . Putting everything together, we have that

• A∗ has d positive eigenvalues, each of them equal to M .

• A∗ has (M−1)d negative eigenvalues, which are the negative of the non-zero eigenvalues
of ρ−1(C + Λ∗).

Let
B∗ := {A ∈ �Md : ‖A − A∗‖ < ρ−1λd+1(C + Λ∗)}.

By Weyl’s theorem (Theorem 37), we deduce that for any A ∈ B∗, the top d eigenvalues of A
would lie in the interval

(
M − ρ−1λd+1(C + Λ∗),M + ρ−1λd+1(C + Λ∗)

)
, and other eigenvalues

of A would lie in the interval
(
− ρ−1 (λMd(C + Λ∗) + λd+1(C + Λ∗)) , 0

)
. In other words, for

any A ∈ B∗, only the top d eigenvalues of A would be nonnegative. Let

Ak = Hk − ρ−1
(
C + Λk

)
.

Suppose Ak ∈ B∗. Then, because only the top d eigenvalues of Ak are nonnegative, we have

Gk+1 = ΠΩ

(
Ak

)
= Π

�Md
+

(
Ak

)
.

That is, projection on the nonconvex set Ω is same as projection on the convex set �Md
+ .
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Now, from Lemma 50 we infer that, if Ak ∈ B∗, then Ak+1 ∈ B∗. Thus, every subsequent
projection on Ω is equivalent to projection on �Md

+ . Note that condition (4.10) in the hypothesis
of the theorem implies that A0 ∈ B∗. Thus, the iterates generated by REG-ADMM initialized
with H0, Λ0 is the same as the iterates generated by C-ADMM initialized with H0, Λ0. Now,
since C-ADMM converges to global optimum [49], we deduce that REG-ADMM converges to
global optimum. �

Proof of Corollary 47. For the clean case, Λ∗ = 0. Thus, with Λ0 = 0, the condition in Theorem
46 reduces to

‖H0 − G∗‖2 ≤
1
ρ2 λ

2
d+1(C0).

Now,
‖H0 − G∗‖2 ≤ ‖H0‖2 + ‖G∗‖2 + 2‖H0‖ ‖G∗‖.

Since ‖G∗‖ = M
√
d , we have

‖H0 − G∗‖2 ≤ ‖H0‖2 + 2M
√
d ‖H0‖ +M2d .

Thus, the algorithm would converge to the global optimum if

‖H0‖2 + 2M
√
d ‖H0‖ +M2d ≤

1
ρ2 λ

2
d+1(C0),

which proves the result. �

4.3.4 Oscillations in High-Noise Regime

Proof of Proposition 49. Suppose we initialize REG-ADMM with H0 = H∗, Λ0 = Λ∗. Then,
by the conditions that Λ1 = Λ0, and that H1 = H0, we get that G1 = H0. Now, since G1 is
formed from top-d eigendecomposition of H0 − ρ−1 (

C + Λ0) (see (4.5)), the range space of(
H0 − ρ−1 (

C + Λ0) − G1) is orthogonal to range space of G1, which gives us(
H0 − ρ−1 (

C + Λ0) − G1) G1 = 0. (4.23)

Or,
ρ−1 (

C + Λ0) G1 =
(
H0 − G1) G1.

Since G1 = H0 (= H∗), the right hand side of the preceding equation is 0, and we obtain the
desired result. �

4.4 Discussion

In this chapter, we analyzed the convergence behavior of REG-ADMM in di�erent noise
regimes. Existing results on nonconvex ADMM do not apply to REG-ADMM as they rely
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on certain smoothness assumptions that are not satis�ed by REG-SDP. We bypassed these
assumptions, and exploited the tightness phenomenon of convex relaxation to guide our
analysis. We started with a general convergence result saying that if the primal iterates
generated by REG-ADMM are asymptotically feasibile and the dual iterates are bounded, then
a subsequence converges to a stationary (KKT) point of REG-SDP. To further re�ne the result,
we looked at the behavior of REG-ADMM when the noise is low. In particular, we de�ned
precisely what is meant by “low” noise by invoking tightness of the convex relaxation C-SDP
below a certain noise threshold. We then proved that, by initializing the primal and dual
variables su�ciently close to the optimum, the iterates of REG-ADMM are guaranteed to
converge to the global optimum. By applying this result to the clean case, we showed that
given any primal initialization, we can explicitly compute values of ρ for which the algorithm
converges to the global optimum. For high noise, we showed that for su�ciently small ρ,
the iterates generated by REG-ADMM do not stabilize, even if initialization of REG-ADMM
satis�es necessary property of a �xed-point. Thus, for highly noisy measurements, ρ should
be set to a relatively large value to ensure convergence of REG-ADMM.

4.5 Appendix

4.5.1 Proof of Lemma 50

The proof of this lemma essentially follows the convergence proof for convex ADMM presented
in [18]. Recall that the C-ADMM is trying to solve the following optimization problem (which
is a reformulation of C-SDP):

min
G,H∈�Md

Tr(CG)

subject to G ∈ �Md
+ , H ∈ Θ,

G − H = 0,

(4.24)

where, Θ = {X ∈ �Md : [X]ii = Id}.
Now, note that

‖Ak − A∗‖2 − ‖Ak+1 − A∗‖2

= ‖Hk − H∗‖2 − ‖Hk+1 − H∗‖2 + ρ−2
(
‖Λk − Λ∗‖2 − ‖Λk+1 − Λ∗‖2

) (4.25)

where we have used the fact that, for every k ,〈
Hk − H∗,Λk − Λ∗

〉
= 0,

because Hk −H∗ has 0 on the diagonal blocks, and Λk −Λ∗ is block-diagonal. Further algebraic
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manipulation gives us

‖Ak − A∗‖2 − ‖Ak+1 − A∗‖2

= ‖Hk − Hk+1‖2 + ‖Gk+1 − Hk+1‖2 − 2
〈
Hk − ρ−1(C + Λk) − Gk+1,H∗ − Gk+1〉

− 2ρ−1
(〈
C,H∗ − Gk+1〉 − 〈

Λ∗,Gk+1 − Hk+1〉) (4.26)

Observe that the �rst two terms in (4.26) are always nonnegative. Nonnegativity of the third
term in (4.26) follows from the convex projection property (projection on �Md

+ ), i.e.,〈
Hk − ρ−1(C + Λk) − Gk+1,H∗ − Gk+1〉 ≤ 0.

To see why the fourth term in (4.26) is nonnegative, observe that the Lagrangian for the convex
program (4.24) is given by

L(G,H,Λ) =
〈
C,G

〉
+

〈
Λ,G − H

〉
.

We have already seen in the proof of Lemma 35 that strong duality holds for C-SDP. Thus,
from the saddle point property of the Lagrangian at global optimum [45], we get

L(G∗,H∗,Λ∗) ≤ L(Gk+1,Hk+1,Λ∗),

which gives us 〈
C,H∗ − Gk+1〉 − 〈

Λ∗,Gk+1 − Hk+1〉 ≤ 0.
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Conclusion

In this thesis, we investigated theoretical and algorithmic issues that arise in the context of the
rigid registration problem. We started by examining well-posedness of the problem in Chapter
2. We saw that (assuming the local coordinate measurements are exact) existence of a solution
to the registration problem is guaranteed, since we have an underlying ground-truth. The more
pertinent question was that of uniqueness (upto congruence) of the ground-truth solution.
To investigate the question of unique registrability, we reformulated it into a question about
rigidity of a graph (body graph). This allowed us to use results from graph rigidity theory,
using which we obtained a linear-time-testable criterion for establishing unique registrability
for planar networks. Furthermore, we resolved a conjecture on unique registrability posed in
[5] by deriving its equivalent formulation in terms of the body graph; this helped us prove the
conjecture for planar networks, and to confute it (through counterexamples) for three and
higher dimensional networks.

Next, we turned to the scenario when the local coordinate measurements are noisy, in
which case we resort to least-squares minimization LS-REG to solve the registration problem.
In its original formulation, LS-REG has to be solved over a nonconvex and disconnected domain.
To combat this, we �rst reformulated LS-REG as a rank-constrained semide�nite program
REG-SDP, and then dropped the rank constraint from REG-SDP to obtain a computationally
tractable convex relaxation C-SDP. The important question here was: Do we lose anything
by relaxing a nonconvex program REG-SDP to a convex program C-SDP? In Chapter 3, we
investigated this question, and showed that when the local coordinate measurements are not
too noisy, global minimizer for the convex program C-SDP is also global minimizer for the
nonconvex program REG-SDP. In this case, we do not lose anything by solving the relaxed
problem (and we say that the relaxation is tight).

Finally, we considered an ADMM-based iterative solver (REG-ADMM) that can directly
attack the rank-constrained semide�nite program REG-SDP. We saw that directly solving
REG-SDP not only obviates the need for any sub-optimal rounding step that needs to be
performed when the relaxation C-SDP is not tight, but also leads to appreciable computational
savings over solving C-SDP. However, existing results on ADMM-based solvers for nonconvex
programs relied on assumptions that made them inapplicable for convergence analysis of
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REG-ADMM. Furthermore, numerical experiments showed that convergence behavior of
REG-ADMM crucially depended on noise in the local coordinate measurements (data) and
value of a solver parameter (ρ). In Chapter 4, we �rst showed that any �xed point of REG-
ADMM is a stationary point for the registration problem. We then proved local convergence
of iterates to global minimizer of REG-ADMM when the data is not too noisy; as a corollary,
we derived explicit values of ρ for which REG-ADMM is guaranteed to converge to global
minimizer when the data is clean. Finally, we gave a rigorous justi�cation for the instability
of REG-ADMM observed for low values of ρ when noise in the data is high.

Future Directions. Our approach to analysis of REG-ADMM provides a tidy framework
within which stronger convergence results can be obtained. More precisely, we have identi�ed
“regimes” based on noise level in the data, which neatly classi�es the variety of fundamentally-
di�erent convergence properties exhibited by REG-ADMM iterates. For instance, we never
observe oscillations when noise in the data is low and value of parameter ρ is small; this is in
sharp contrast to the situation when noise in the data is high, in which case the iterates exhibit
non-attenuating oscillations whenever ρ is set below a certain threshold. This identi�cation of
di�erent noise regimes allows us formulate precise conjectures to guide future investigations.
We end this dissertation by listing two conjectures whose resolution would be of immediate
practical relevance:

• In the low-noise regime, the iterates of REG-ADMM converge to global minimizer of
REG-SDP if 0 < ρ < ρl for some explicitly computable ρl that depends on the data matrix
C and the initialization. Note that we have proved such a result when the data matrix is
clean (Corollary 47).

• In the high-noise regime, the iterates of REG-ADMM converge (i.e. they do not oscillate
inde�nitely) if ρ > ρh for some explicitly computable ρh that depends on the data matrix
C and the initialization. Our result (Theorem 45) would then guarantee stationarity of
the point to which REG-ADMM converges.
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